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ABSTRACT 

Two deficiencies in the original Noise algorithm are corrected: 
second order interpolation discontinuity and unoptimal gradient 
computation. With these defects corrected, Noise both looks 
better and runs faster. The latter change also makes it easier to 
define a uniform mathematical reference standard. 
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1  INTRODUCTION 

Since its introduction 17 years ago [Perlin 1984; Perlin 1985; 
Perlin and Hoffert 1989], Noise has found wide use in graphics 
[Foley et al. 1996; Upstill 1990]. The original algorithm, although 
efficient, suffered from two defects: second order discontinuity 
across coordinate-aligned integer boundaries, and a needlessly 
expensive and somewhat problematic method of computing the 
gradient. We (belatedly) remove these defects. 

2  DEFICIENCIES IN ORIGINAL ALGORITHM 

As detailed in [Ebert et al 1998], Noise is determined at point 
(x,y,z) by computing a pseudo-random gradient at each of the 
eight nearest vertices on the integer cubic lattice and then doing 
splined interpolation. Let (i,j,k) denote the eight points on this 
cube, where i is the set of lower and upper bounding integers on 
x: {| x |,| x |+1}, and similarly j = { | y |,| y |+1} and k = { | z |,| z 
|+1}. The eight gradients are given by gi,j,k = G[P[P[P[i]+j]+k]] 
where precomputed arrays P and G contain, respectively, a 
pseudo-random permutation, and pseudo-random unit-length 
gradient vectors. The successive application of P hashes each 
lattice point to de-correlate the indices into G. The eight linear 
functions gi,j,k · (x-i,y-j,z-k) are then trilinearly interpolated by 
s(x-| x |), s(y-| y |) and s(z-| z |), where s(t) = 3t2-2t3.  

The above algorithm is very efficient but contains some 
deficiencies. One is in the cubic interpolant function's second 
derivative 6-12t, which is not zero at either t=0 or t=1. This non-
zero value creates second order discontinuities across the 
coordinate-aligned faces of adjoining cubic cells. These 
discontinuities become noticeable when a Noise-displaced surface  
 

is shaded; then the surface normal (which is itself a derivative  
operator) has a visibly discontinuous derivative (Figure 1a). 

 
Figure 1a: Noise-displaced superquadric with old interpolants 

 
Figure 1b: Noise-displaced superquadric with new interpolants 

The second deficiency is that whereas the gradients in G are 
distributed uniformly over a sphere, the cubic grid itself has 
directional biases, being shortened along the axes and elongated 
on the diagonals between opposite cube vertices. This directional 
asymmetry tends to cause a sporadic clumping effect, where 
nearby gradients that are almost axis-aligned, and therefore close 
together, happen to align with each other, causing anomalously 
high values in those regions (Figure 2a). 



 

  

 
Figure 2a: High-frequency Noise, with old gradient distributions 

 
Figure 2b: High-frequency Noise, with new gradient distributions 

3  MODIFICATIONS 

The above deficiencies are addressed as follows. 3t2-2t3 is 
replaced by 6t5-15t4+10t3, which has zero first and second 
derivatives at both t=0 and t=1. The absence of artifacts can be 
seen in Figure 1b. 

The key to removing directional bias in the gradients is to skew 
the set of gradient directions away from the coordinate axes and 
long diagonals. In fact, it is not necessary for G to be random at 
all, since P provides plenty of randomness. The corrected version 
replaces G with the 12 vectors defined by the directions from the 
center of a cube to its edges: 

(1,1,0),(-1,1,0),(1,-1,0),(-1,-1,0),  
(1,0,1),(-1,0,1),(1,0,-1),(-1,0,-1),  
(0,1,1),(0,-1,1),(0,1,-1),(0,-1,-1) 

Gradients from this set are chosen by using the result of P, 
modulo 12. This set of gradient directions was chosen for two 
reasons: (i) it avoids the main axis and long diagonal directions, 

thereby avoiding the possibility of axis-aligned clumping, and (ii) 
it allows the eight inner products to be effected without requiring 
any multiplies, thereby removing 24 multiplies from the 
computation. 

To avoid the cost of dividing by 12, we pad to 16 gradient 
directions, adding an extra (1,1,0),(-1,1,0),(0,-1,1) and (0,-1,-1). 
These form a regular tetrahedron, so adding them redundantly 
introduces no visual bias in the texture. The final result has the 
same non-directional appearance as the original distribution but 
less clumping, as can be seen in  Figure 2b. 

4  PERFORMANCE 

In a timing comparison (C implementations on the Intel 
optimizing compiler running on a Pentium 3), the new algorithm 
runs approximately ten percent faster than the original. The cost 
of the extra multiplies required to compute the three corrected 
interpolants is apparently outweighed by the savings from the 
multiplies no longer required to compute the eight inner products. 
Examination of the assembly code indicates that the Intel 
processor optimizes by pipelining the successive multiplies of the 
three interpolant calculations since no memory fetches are 
required within this block of computations. 

Rather than use a 12-entry table to avoid inner product multiples, 
the G table can also be expanded and used to replace the last 
lookup into P. Whether this method is more efficient is processor 
dependent. For example, 3D inner products are single operations 
on both nVidia and ATI pixel processors. 

5  CONCLUSIONS 

The described changes result in an implementation of Noise 
which is both visually improved and computationally more 
efficient. Also, with the pseudo-random gradient table removed, 
the only pseudo-random component left is the ordering of the 
permutation table P. Once a standard permutation order is 
determined, it will at last be possible to give a uniform 
mathematical definition for the Noise function, identical across all 
software and hardware environments. 
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