
High Speed,Scalable,andAccurateImplementationof PacketFair
QueueingAlgorithmsin ATM Networks

JonC.R.Bennett
FORESystems
jcrb@fore.com

DonpaulC. StephensandHui Zhang
CarnegieMellon University

donpaul,hzhang@cs.cmu.edu

Abstract

The fluid GeneralizedProcessorSharing(GPS)algo-
rithm hasdesirablepropertiesfor integratedservicesnet-
works andmany PacketFair Queueing(PFQ)algorithms
have beenproposedto approximateGPS.However, there
have beenfew high speedimplementationsof PFQalgo-
rithms that cansupportlargenumberof sessionswith di-
verseraterequirementsandat the sametime maintainall
theimportantpropertiesof GPS.Theimplementationcost
of a PFQalgorithmis determinedby two components:(1)
computationof the systemvirtual time function and (2)
maintainingthe relative orderingof the packetsvia their
timestampsin a priority queuemechanism.While mostof
therecentlyproposedPFQalgorithmsreducethecomplex-
ity of computingthesystemvirtual timefunction,thecom-
plexity of maintainingthepriority queue,andthereforethe
overallcomplexity of implementingPFQ,is still a function
of thenumberof active sessions.In addition,while reduc-
ing thealgorithmicor asymptoticcomplexity hasbeenthe
focusof mostanalysis,to run at high speed,it is alsoim-
portantto reducethe complexity of basicoperations. In
this paper, we develop techniquesto reduceboth typesof
complexities. In particular, we presenta novel grouping
architecturefor implementingPFQ with an algorithmtic
complexity thatis a functionof thenumberof distinctrates
supported,but independentof thenumberof sessionsin the
system.A key advantageof theproposedschemeis thatit
introducesonly minor inaccuracy in the implementedal-
gorithm. To reducethe costof basicoperations,we pro-
posea hardwareimplementationframework and several
novel techniquesthatreducetheon-chipmemorysize,off-
chip memorybandwidth,andoff-chip accesslatency. We
presenta single chip implementationof WF

�
Q+, one of

the mostaccurateFair Queueingalgorithms,that runsat
622Mbps.

1 Intr oduction

Futurehigh speedintegratedservicespacket-switched
networkswill simultaneouslysupportmultiple types of
servicesover a single physical infrastructure. In packet

switchednetworks,packetsfromdifferentsessionsbelong-
ing to differentserviceandadministrative classesinteract
with eachotherwhenthey aremultiplexedatthesameout-
put link of a switch. Thepacketservicedisciplinesor the
schedulingalgorithmsat switching nodesplay a critical
role in controlling the interactionsamongdifferenttraffic
streamsanddifferentserviceclasses.

Recently, a classof servicedisciplinescalled Packet
FairQueueing(PFQ)algorithmshavereceivedmuchatten-
tion. PFQalgorithmsapproximatethe idealizedGeneral-
izedProcessorSharing(GPS)policy [8], which is proven
to have two desirableproperties:(a) it can guaranteean
end-to-enddelay to leaky bucket constrainedsessionre-
gardlessthe behavior of othersessions;(b) it can ensure
instantaneousfair allocationof bandwidthamongall back-
loggedsessionsregardlessof whetheror not their traffic is
constrained.The formerpropertyis thebasisfor support-
ing guaranteedservicetraffic [8] while thelaterpropertyis
importantfor supportingbest-effort servicetraffic [7, 11]
andhierarchicallink-sharingservice[1]. While thereare
many PFQ algorithmsproposed,with different tradeoffs
betweencomplexity andaccuracy [3, 5, 6, 10, 12,13,14],
few real implementationexists that canachieve all of the
threefollowing goals:

1. supporta large numberof VCs with diverseband-
width requirements,

2. operateat veryhighspeeds,OC-3andhigher,

3. maintainimportantpropertiesof GPS(delaybound,
fairness,worst-casefairness).

Thekey difficulty is thatPFQalgorithmsrequirebuffer-
ingonapersessionbasisandnon-trivial servicearbitration
amongall sessions.Therearetwo major costsassociated
with thearbitration:(1) thecomputationof thesystemvir-
tual time function,whichis a dynamicmeasureof thenor-
malizedfair amountof servicethatshouldbe receivedby
eachsession,and(2) the managementof a priority queue
to to orderthetransmissionof packets.A numberof PFQ
algorithmshavebeenproposedthathavevirtual timefunc-
tions with complexity of

�������
or

���
	���
����
[1, 5, 6, 13].

While thealgorithmticcomplexity of implementinga pri-
ority queuefor

�
arbitrary numbersis

���
���������
, it is

possibleto implementFair Queueingwith mechanismsof
lower complexity by takingadvantageof thepropertiesof
Fair Queueingalgorithms[10]. However, asdiscussedin
Section5, therearea numberof difficulties to apply this
techniquein a highspeedimplementation.

In this paper, we presenta novel architecturethat re-
ducesthe overall complexity of implementinga classof
PFQalgorithmsby taking advantageof the propertythat
ATM networkshave fixed packetsize. In the architec-
ture, the server is restrictedto supporta fixed numberof
ratesand sessionswith sameratesare groupedtogether.
By usingthe locally boundedtimestampproperty, which
tightly boundsthe differenceof per sessionvirtual times
betweensessionswith thesamerate,it is possibleto main-
tain the priority relationshipamongsessionsin the same
groupwithoutsorting. The problemis thenreducedfrom
one that schedulesamongall sessionsto one that sched-
ulesamongall sessionsat the headof the groups. With
suchanimplementation,thecomplexities for bothpriority
managementandvirtual time computationgrow with the
numberof discreteratessupportedratherthanthenumber
of sessions.To reducethecomplexity of basicoperations
in hardwareimplementations,we observe it is important
to minimizeoff chip memorybandwidth,latency, andon
chip memorysize. By taking advantageof the globally
boundedtimestampproperty, whichboundsthedifference
betweensystemvirtual timeandthevirtual starttimeof all
sessions,wecanreducethememoryrequirementsby more
than ����� .

2 Background: PFQ Algorithms

PFQarepacketapproximationalgorithmsfor the GPS
discipline[8]. A GPSserver has

�
queues,eachassoci-

atedwith a serviceshare.During any time interval when
thereareexactly � non-emptyqueues,the server serves
the � packetsat theheadof thequeuessimultaneously, in
proportionto their serviceshares.All PFQalgorithmsuse
a similarpriority queuemechanismbasedon thenotionof
a virtual time function. They differ in choicesof system
virtual time functionsandpacketselectionpolicies.

2.1 SystemVirtual Time Function

To approximateGPS,a PFQalgorithmmaintaina sys-
temvirtual time � � �!�

andavirtualstarttime "$# ��� � andavir-
tualfinishtime %&# ���!� for eachsession' . "$# � �!� and %&# � �!� are
updatedaseachtime session' becomesactive or a packet
from session' finishesservice,

"$# �)(*�,+
-../ ..0

13254 � � ��(*��6 % # �)(879� �
sessioni becomesactive% # �)(87:�;=<# finishesservice

(1)

% # �)(*�>+ " # ��(*�@?BA <#C # (2)

where %&# ��(879�
is thevirtual finish time of session' before

theupdateand A <# is thelengthof thepacketat theheadof
session' ’squeue.

Intuitively, � �)(*�
is the normalizedfair amountof ser-

vice time that eachsessionshouldhave received by time(
, " # �)(*� representsthenormalizedamountof servicetime

thatsession' hasreceivedby time
(
. Thegoalof all PFQ

algorithmsis to minimizethediscrepanciesamong" # �)(*� ’s
and � ��(*�

.
The role of the systemvirtual time function is to re-

setthevalueof thesession’svirtual starttime whena pre-
viously unbackloggedsessionbecomesbackloggedagain.
Dif ferentPFQalgorithmsusedifferentvirtual time func-
tions,whichhavedifferenttradeoffsbetweenaccuracyand
complexity. A virtual time function is accurateif a PFQ
algorithmbasedon it providesalmostidenticalserviceas
GPS.

WeightedFair Queueing(WFQ), the best-known PFQ
algorithm, and Worst-case-Fair WeightedFair Queueing
(WF

�
Q), the mostaccuratePFQalgorithm,usea virtual

time function that is definedwith respectto theGPSsys-
tem. While this is themostaccuratevirtual time function,
it is rathercomplex to computeit as the computationre-
quireskeepingtrack of the numberof active sessionsin
GPS,whichmaychangemultipletimesduringaveryshort
time period. A numberof simplervirtual time functions
have beenproposedthat can be calculateddirectly from
the stateof the packetsystem. In the Self ClockedFair
Queueing(SCFQ)algorithm, the virtual time function is
definedto bethevirtual finish timeof thepacketcurrently
beingserviced,i.e., �EDGFIH@J ��(*�K+ %:L�MON�P , where; �)(*�

is the
packetbeingservicedat time

(
. While ��DQFIH@J ��(*�

is quite
simpleto compute,theresultedSCFQalgorithmprovides
muchlargerdelayboundsthatWFQ.A moreaccuratevir-
tual timefunction �GHSR@H@J ���!�

thatcanalsobecomputeddi-
rectly from thepacketsystemis proposedin [13]. There-
sultedFBFQalgorithmcanprovide thesamedelaybound
asWFQ.

An evenmoreaccuratevirtual time function, �ET H@U�J@V ,
is proposedin [1] anditeratively definedasfollows:

��T H@UWJ@V �)(*?YX=�Z+ 13254 � �ET H@U8J&V ��(*��?[XG6]\ '�^ #`_9aR MbN�P � "$# �)(*� � �
(3)

where cd �)(*�
is thesetof sessionsbackloggedin theWF

�
Q+

systemat time
(
.

2.2 PacketSelectionPolicy

In all of WFQ, SCFQ,andFBFQ, when the server is
picking the next packetto transmit,it chooses,amongall
the packetsin the system,the one with the smallestvir-
tual finish time. We call sucha packetselectionpolicy the
“Smallestvirtual FinishtimeFirst” or SFFpolicy.

While PFQalgorithmsusingSFFpolicy canprovideal-
mostidenticaldelayboundsasGPS,they maystill intro-
ducelargeservicediscrepanciesfrom GPS.In [2], we in-
troduceda metric called Worst-caseFair Index (WFI) to
characterizetheservicediscrepancy betweena PFQalgo-
rithm andthe idealizedGPS.We showedthat largeWFI’s
aredetrimentalto theperformanceof best-effort andlink-
sharingservices[1, 2]. All PFQalgorithmsusingSFFpol-
icy have largeWFI’s.

In [1, 2], we proposedtwo algorithms WF
�
Q and

WF
�
Q+ thatusea differentpacketselectionpolicy. With

thesealgorithms,whentheserveris pickingthenext packet
transmit,it chooses,amongall theeligiblepackets,theone
with thesmallestvirtual finish time. A packetis eligible if
its virtual start time is no greater than the currentvirtual
time. Intuitively, a packetbecomeseligible only after it
hasstartedservicein the correspondingfluid system.We
call sucha packetselectionpolicy the “SmallestEligible
virtual FinishtimeFirst” or SEFFpolicy.

The differencebetweenWF
�
Q and WF

�
Q+ is that

WF
�
Q usesa systemvirtual time function that emulates

theprogressof theGPSsystemwhile WF
�
Q+ usesa sys-

tem virtual function that can be computeddirectly from
thepacketsystemasdefinedin (3). It hasbeenshown that
WF

�
Q is theoptimalPFQalgorithmin termsof accuracy

in approximatingGPS.WF
�
Q+maintainsall theimportant

propertiesof WF
�
Q: bothof themprovide thetightestde-

lay boundsandWFI’s amongall PFQalgorithms. In the
rest of the paper, we will useWF

�
Q+ as an exampleto

discusstheissuesof implementingPFQalgorithmsin high
speedATM networks.

2.3 Complexity of PFQ Algorithms

Besidesthecomputationof thevirtual time function,a
secondcostof implementinga PFQalgorithmis to main-
tain a priority queuebasedon eithervirtual starttime,vir-
tual finish time, or both. Since virtual start and finish
times are monotonicallyincreasingwithin eachsession,
only headof theeachsessionneedto beconsideredwhen
theserver is picking thenext packetto transmit.Thus,the
numberof entitiesin the priority queueis the numberof
active sessions.

Therefore,eventhoughSCFQ,SFQ,LFVC, FBFQ,and
WF

�
Q+ have simplevirtual time functions,their overall

implementationcomplexity still growswith thenumberof
sessionssharingthe link. While it hasbeendemonstrated
that sortingcan be implementedat very high speedwith
several hundredsof connections[3], it is unclearwhether
suchimplementationscanscaleto largenetworkswith tens
of thousandsof sessionscompetingfor a singlelink.

i, Sim, Sm

Si
Fi = Si + L/r1

Off Chip On chip

j, Sjk, Sk

p, Spv, Sv

Sp
Fp =Sp + L/rN

Tail
Head

q, Sq

Group 1

Group N

Session
Scheduler

Link

Tail
Head

Figure1: GroupingArchitecture

3 Implementation Ar chitecture

In this section,we presentanarchitecturethatcaneffi-
ciently implementa classof PFQalgorithmsin ATM net-
workswhereall cellshave the samesize. In thearchitec-
ture, the server is restrictedto supporta fixed numberof
ratesand sessionswith sameratesare groupedtogether.
Useof this groupingmechanismdoesnot sacrificetheac-
curacy of theimplementedalgorithm.For PFQalgorithms
with the locally boundedtimestampproperty, the prior-
ity relationshipamongsessionsin the samegroupcanbe
maintainedwithout sorting. The problemis thenreduced
from one that schedulesamongall sessionsto one that
schedulesamongsessionsat theheadof thegroups.With
suchanimplementation,thecomplexities for bothpriority
managementandvirtual time computationgrow with the
numberof discreteratessupportedratherthanthenumber
of sessions.

Furthermore,we note that while available bandwidth
to off chip memoryand the latency betweendependent
accessesare the main bottlenecksin the implementation
of moderncomputingsystems,our architectureaddsonly
two off chip accessespercell enqueueor dequeuebeyond
what is requiredfor a Round-Robinscheduler. The addi-
tional offchip accessesandrequiredstorageis exclusively
thatof a timestampper session.For Fair Queueingalgo-
rithmswith the globally boundedtimestampproperty, we
canapplya techniqueto compressthesessiontimestamps
by morethan ����� . This reducesboththesystemcostand
theimplementationcomplexity by halvingthememoryre-
quiredto store,andbandwidthto accessthe timestamps.
In addition,we usearray-basedratherpointer-baseddata
structuresto reducethe memoryaccessby taking advan-
tageof memorypipelining.

Most of thePFQalgorithmsin the literature,including
WF

�
Q+, SCFQ,andSFQ,have both the locally bounded

timestampandthegloballyboundedtimestampproperties,
thereforecanbeimplementedwith thisarchitecture.

3.1 Grouping Ar chitecture

The key difficulty of implementingPFQalgorithmsis
that thecomplexity of maintainingthepriority queue,and
possiblycomputingthe virtual time function, grow as a
function of the numberof sessionssharingthe link. To
decouplethe implementationcomplexity from the num-
berof sessions,we introducethe following restriction: at
any time,only a fixednumberof guaranteedratesaresup-
portedby the server. As will bediscussedin Section3.5,
this restrictionwill not significantlyaffect thelink utiliza-
tion. All sessionsthatsharea commonrateareassociated
with a groupwhichstoresanentryfor eachactive session.
Theseentriescontaina pointerto theheadof thesession’s
queueandthevirtual startingtime for thecell at thehead
of thesession’s queue.In eachgroup,thesessionwith the
smallestvirtual startingtimeis placedin thescheduler(see
Figure1).

An importantadvantageof sucha groupingarchitec-
ture is that for any of the threepacketselectionpolicies
of SmallestStart time First (SSF), the SmallestFinish
time First (SFF)or theSmallestEligibile Finishtime First
(SEFF),only thepacketsin theschedulerneedto becon-
sidered.For algorithmswith theSSFpolicy, this is easyto
seeasthepacketwith thesmallestvirtual starttime in the
scheduleris alsotheonewith thesmallestvirtual starttime
amongall packets.For algorithmswith theSFFpolicy, we
observe that in anATM networkwith fixedpacketsizeL,
for any two sessions' 6fe thatbelongto thesamegroup,if" # ��(*�Kg "Gh ��(*� , % # ��(*�Kg %ih �)(*� alsoholds. This followsdi-
rectly from % # �)(*�9+ " # �)(*�j?lkmWn , %$h ��(*�K+ "Gh ��(*�j?okmfp , andC # + C h . Therefore,the sessionwith the smallestvirtual
starttime in thescheduleris alsotheonewith thesmallest
virtual finishtimeamongall packets.For a SEFFschedul-
ing policy we observe that if therearesessionsin a group
thatareeligible, i.e., theirvirtual starttimesarenogreater
than thecurrentvirtual time, thesessionwithin thegroup
in theschedulermustalsobeeligibleasit hasthesmallest
virtualstarttimein thegroup.Since,it alsohasthesmallest
virtual finishing time of all sessionswithin the group,the
packetwith the smallesteligible finish time in the sched-
uler is also the onewith the smallesteligible finish time
amongall packets.

Without introducingany inaccuracy, the above group-
ing architecturereducesthe complexity of the scheduler
from one that scaleswith the numberof sessionsto one
thatscaleswith the numberof distinct rategroups.How-
ever, thereis still the needto selectthe packetwith the
smallestvirtual starttime from eachgroup.

3.2 Maintaining Priority Within Groups

In thissession,weshow thatit is possibleto maintaina
priority queueof sessionsfor eachrategroupwith a sim-
ple linked list for PFQ algorithmsthat have the locally

boundedtimestampproperty.

Definition 1 A PFQ algorithm has the locally bounded
timestampproperty if for any two backloggedsessions'
and

e
,

q "$# ��(*�j7 " h ��(*� q grAC #�s]t # �)(*�9u+ � 6 t h ��(*�vu+ � 6 C # + C h
(4)

The propertyis so namedbecause(4) tightly boundsthe
differenceof virtual start times betweentwo sessionsin
the samerate group. A relatedproperty is the globally
boundedtimestamppropertywith which differencesbe-
tweenthesystemvirtual time andvirtual starttimesof all
sessionsarebounded.

Definition 2 A Fair Queueingalgorithmhasthe globally
boundedtimestamppropertyif thefollowingholds

"$# ��(*�j7wAC # g � �)(*�xg "$# ��(*�&?yAC #ls '�z�{ ({ t # ��(*�[u+ � (5)

We will discussin Section 3.4 how PFQalgorithmswith
the globally boundedtimestamppropertycan reducethe
memory requirementsfor their timestampsby ����� or
more. Most of the PFQ algorithmsin the literature, in-
cluding WF

�
Q+, SCFQ,and SFQ,have both the locally

boundedtimestampand the globally boundedtimestamp
properties.

With thelocally boundedtimestampproperty, it is pos-
sible to maintaina priority queueof sessionsin the same
rategroupwith a simplelinked list. Eachrategroupcon-
tainsa linked list of the timestampof the cell at the head
of eachsession’s queue.The entriesin the linked list are
storedin increasingtimestamporder. Therearethreesitu-
ationswheninsertionsinto thelist areneeded:thesession
at theheadof thegrouphasfinishedservice,anew session
joins,andanpreviously idle sessionbecomesactive.
SELECT-SESSION

�`|}�
1

e}+~|��������G� " � z�z�' � ^
2 � +�|����9� ' � " � z�z�' � ^
3 TRANSMIT-HEAD-CELL

��e��
4 " h + "$� ? kmW�
5 if

�
BACKLOGGED

��e��x+��9���Y�}�
6 then
7 if

�)e�u+ � �
8 then
9 � � ^ ���G(Z+�e

10
|��������Q� " � z�z�' � ^ +�ev� ^ ���G(

11
|����9� ' � " � z�z�' � ^ +�e

12
\�+~|��������G� " � z�z�' � ^

13 " � + "$�
14 "=� + "Gh
15 else if

�)e�u+ � �

16 then
17

\y+�ev� ^ ���E(
18

|��������G� " � z�z�' � ^ +�\
19 " � + "$�
20 else

|�� z (*��(*� z +~��\ ; (*�
Whenthesessionattheheadof thelinkedlist

e
isserved

it will have its new startingtime computedas "Gh + " � ?km � . From(4), we know that this new startingtime will be
larger thanthe timestampof any othersessionin its rate
group.Therefore,simply moving thesessionto thetail of
thelinked list will maintainthesortedorderof thelist.
CELL-ARRIVAL

���}�
1 '`^S� �}+

LOOKUP-SESSION
���}�

2 ' + '`^S� �}� '
3

|�+ '�^S� �}�o� C �5� ;
4 � ��(*�8� " #
5 if

� �
NEW-SESSION

� ' ��+��9���Y��� � C
6

� " #¢¡ � �)(*� �j� C � " #j£ � � �)(*�S?¤km ¥ ��� �
7 then

� ' \¦���5�E(¢+B�
8 else

� ' \¦���5�E(¢+ �
9 if

�
BACKLOGGED

� ' �x+ %[§ A " ���
10 then if

|~� z (*��(*� z +���\ ; (*�
11 then
12

|�� z (*��(*� z +~�G��('`¨ �
13

|��������G� " � z�z�' � ^ + '
14

|����9� ' � " � z�z�' � ^ + '
15 if

�©� ' \ª���5�E(«+B���
16 then "$# + � �)(*�
17 "$� + " � + "$#
18 else
19

|����9� ' � " � z�z�' � ^ � ^ ���E(�+ '
20

|����9� ' � " � z�z�' � ^ + '
21 if

���
� ' \¦���5�G(¬+­���@� C � " #¢¡ "=� ���
22 then if

� � ��(*� £ "=� �
23 then "=� + " # + � ��(*�
24 else " # + "=�
25 ENQUEUE

� ' 6*���
When a previously unbackloggedsession' becomes

backloggedat time
(
, we appendthesessionto theendof

thelist. If thelist wasempty, weassign"$# ��(*� to bethecur-
rentvalueof virtual time. If the list wasnot empty, there
is needto preservethelocally boundedtimestampproperty
andthesortedorder. Implementingtheexactalgorithmas
definedby "$# + 1®2�4 � � ��(*��6 %&# � hastwo complications.
First,sincetimestampsarerepresentedby finite numberof
bits ^ , it is not possibleto comparetwo timestampsthat
aremorethan ¯�°�±&² time units apart. Whena sessionre-
mains idle long enough,the differencebetween% <# and� �)(*�

can be more than ¯�°�±&² time units apart, therefore
makeit impossibleto computethe maximumof the two.
The

� ' \ª���5�E(
conditionidentifieswhetherthesession’s " #

is valid. If sufficient time haslapsedthat thevirtual clock
hasrolled, " <# maybein thedistantpastbut appearswithin
therange.If thisweretohappen,thenew " # will still beoff
by nomorethan

kmWn . A secondcomplicationis thatin order
to maintainthesortedlist, thesessionneedsto beinserted
to thecorrectplace,whichrequiresscanningthelinkedlist.
Whena session' arrives into an emptyqueue,its virtual
starttime will bewithin therange ³b� ��(*�86 � �)(*�@?¤km ¥j´ . The
lower boundis givenby (1) andits upperboundgivenby
(5). If thegroupis empty, "$# canobtainits desiredvalue.
If thegroupis notempty, weappendthesessionto theend
of therategroup’s list of sessions.For the timestamp,we
chosethe smallestapproximatevaluethat maintainsboth
thelocally boundedtimestamppropertyandthesortingre-
lationship

Comparedto a RoundRobin scheduler, our scheduler
addsonly two additionaloff chipaccesseswhenagroupis
scheduled(procedureSelect-Sessionlines µ and

��¶
), and

two accesseswhenacell arrivesto anemptysessionqueue
(procedureCell-Arrivalline µ andeither

��·
, ¯ ¶ , or ¯�µ). We

conjecturethatwith suchapproximations,thedelaybounds
andWFI’s provided by the algorithmwill increaseby

km n
for eachsession' .
3.3 Implementation Complexity

Most of theresearchin the literaturefocuseson reduc-
ing thealgorithmticorasymptoticcomplexity of PFQalgo-
rithms.In highspeedimplementations,it is alsoimportant
to reducethecomplexity of basicoperations1.

The rapid increasein the performanceof silicon chip
technologymakesit possibleto perform on-chip opera-
tionsacrossbothtime(pipelining)andspace(superscalar).
This samelevel of parallelismis not availablefor off-chip
memoryaccesses,andthis will eventualybethedominat-
ing factor as improvementsin on-chipperformancecon-
tinueto outpaceimprovementsin off-chip bandwidth.For
thisreason,off-chipmemorybandwidthandlatency arethe
mainbottlenecksin high speedimplementations.Theim-
pactof thehigh memorylatency becomesevenmorepro-
nouncedwhendatafrom a previous memoryreaddeter-
minesthe addressof thenext pieceof data(asin pointer-
baseddatastructuresuchastree).

While on-chip memoryis expensive, it provideshigh
bandwidth with low latency; external memory is rela-
tively inexpensive but facessignificantly higher latency
andbandwidthrestrictions.Thusproperlypartitioningthe
storageandaccessrequirementsbetweenon andoff-chip
memoriesis thekey to designingcost-effective implemen-
tationsfor high speedoperation. As we will discussin
Section4, our architecturecan be implementedin an ar-
raybasedstructureon-chipwith afixednumberof off-chip
memoryreferences.This enablesus to takeadvantageof

1Arithmaticoperationssuchas ¸Z¹�ºj¹¼»�¹f½ andmemoryreadandwrites

availableparallelismon-chipwhilehaving arelativelysim-
plecomponentthatcanbeeasilydesignedandverified.

3.4 Issueswith Timestamps

As this schedulingmechanism’s only additional ac-
cessescomparedtoasimpleroundrobinarefor thereading
andwriting of timestampvalues,it is their efficient repre-
sentationthatnow mustbeaddressed.As discussedin sec-
tion 3.2,timestampsaremaintainedpersessionin off-chip
memory. Only onetimestampneedsto bestoredperses-
sion as the finish time may be easilycalculatedfrom the
start time, and vice versa. The groupmaintainson-chip
thesetimestampsfor the sessionsat the headand tail of
the group’s list andthe serviceinterval of the group(the
lengthof the interval betweenthe virtual finish times of
two adjacentcells in a continuouslybackloggedconnec-
tion, i.e.

kmWn). The size of thesetimestampsdetermines
both therangeof supportableratesandthe accuracy with
which thoseratesmay be specified.In addition,they de-
terminethe scheduler’s memoryrequirementsin termsof
bandwidthandstoragespace,bothon-chipandoff-chip.

Using modulararithmetic,timestampsrepresentedby
finite numberof bits ^ canbecomparedwithoutambiguity
if differencebetweenthemis is lessthan ¯�°�±@² . Usingthis
propertyit wassuggestedin [9] that thesizeof thetimes-
tampsin thesystemonly needto bea few bits larger than
the numberof bits neededto representthe smallestrate
in the system,C � # ° , as it hasthe largestserviceinterval,kmW¾SnO¿ . However in a systemwith very small rates,a rela-
tively largenumberof bitsmaystill beneededto represent
thetimestamps.

In anATM system,it is considerednaturalto represent
thevirtual timein termsof cellsserved.Wenotethatwhile
the virtual time may be accuratelyrepresentedin integer
unitsof cell times,thesamecannot besaidfor theservice
intervalsof the sessionswithin the system.For example,
the fastestserviceintervalswould beevery

�
, ¯ ,

¶
, .. cell

times, which would in turn representratesof
�
, ²� , ²À , ..

timesthe link rate. Sessionratesbetween ²� and ²À of the
link ratewould not be able to be representedaccurately,
thus yielding large roundingerrorsfor the sessionswith
highrates.To avoid theseroundingerrors,we insteadrep-
resentthesystemtimeasa fixedpointnumber, with ^ bits
in the integerportionand

\
bits in the fractionalportion.

Thiswaywearenot restrictedto usingrateswhoseservice
intervals are integer valued. This valueof ^ is given bymmW¾SnO¿ ? ¯ , where C is theoutputlink’ srateand C � # ° is the
smallestratethatis desiredto berepresentable.Thevalue
of

\
is given by

	���
 � �@mmW� �¢7��
, where C�Á is the granular-

ity with which it is desiredthehighestrateconnectionsbe
specified.Which resultsin anerrorof ² ÂWÂ��Ã
Ä ¾ percentin the
representationof thoserates.

If we arewilling to accepta relative error of this size

m bits - Accuracy

S(t)

V(t) Cell Clock

n bits - Range

Service Interval
of Session A

Service Interval
of Session B

Session A’s
Start Time

Exponent for Session A

Figure2: Compressionof ServiceIntervalsand "$# ��(*� ’s
for sessionswith higherrate,wemightbewilling to accept
suchaccuracy for all sessions.For example,thedifference
betweena serviceinterval of 10,240cellsand10,240.001
cellscouldbehardlydetectableby a user. Thus,insteadof
measuringerrorin absoluteunitsof time,wenormalizethe
errorwith respectto thesession’s servicerate. To do this,
wesimplystoretheupper

\3?��
bitsof thesession’sservice

interval andan“exponent”of size
	���
 � ^ to denotethebit

positionin the ^ bitsof theintegersectionwhereitshighest
bit wouldbeplaced.For example,asessionwith C # + { ��� �
hasa serviceinterval of ²Å ÂWÂ�² +Æ� ����� +Ç��������� � � ����� � ,
with thefirst 1 in the10’th integerbit position.The“expo-
nent”will be

� � andtheupper
\�?ª�

bitsof thenumberwill
beretained,roundingupor paddingwith zerosin thelower
orderbits if required. Figure2 shows anexamplewith a
lower rate session§ and a higher rate session

d
. Note

that the numberof bits in ^ definethe rangeof support-
ableratesand

\
definestheaccuracy at which thoserates

maybe represented.This interval compressiontechnique
is genericandshouldbeapplicableto anyPFQalgorithm.

Now thatwe have a compressedrepresentationfor ser-
vice intervals, we can apply similar techniqueto com-
pressthe sessionvirtual start timesaswell. The globally
boundedtimestampproperty(5) boundsthe virtual start
timesof all sessionsto be within one serviceinterval of
thesystemvirtual time. This propertyenablesus to com-
parea session’s start time to the systemvirtual time us-
ing only 2 morebits thanis requiredto representthe ser-
vice interval of the group. If stored,the lower orderbits
would never changeduring a backloggedperiod,thuswe
cansafelyassumethey remainaconstant(suchasall setto�
). Note that the “exponent”remainsthesameasis used

for the serviceinterval, thusonly the compressed
\È?�¶

bits needbestoredpersession.In thecaseof whatwould
have beena

¶�·
bit timestamp,with ¯ · bitsof ^ and

� � bits
of

\
, wereducetheper-sessioninformationto

\É?¦¶}+���¶
bits almosta threefold savings in off-chip memoryband-
width andstorage.On-chipmemoryrequirementsfor the
sessionstart times and group service interval are simi-
larly reducedfrom three ^ ?Ê\

bit numbers(
� ��Ë bits) to:�`\®?�¶��W?���\3?}¶��W?���\3?����*?v	Ì��
 � ^ +­��¶G?���¶G?����Í? � + µG¯

bits,whichis morethanatwofold savingsin expensiveon-
chipmemory.

3.5 Implications of Limited Rates

Oneissueis how many ratesneedto besupportedand
how therestrictionof supportingonlyfixednumberof rates
affect the networkutilization. In [4] it hasbeendemon-
stratedin the context of the ABR service,that high net-
work utilization canbeachieved even with differencesas
largeasa

� ��� betweenconsecutiverates.It shouldbealso
notedthatthenumberof ratesthatcanbeusedatany time
is strictly lessthat the numberof differentratesthat may
exist in the system.For example,a systemcanonly have
onesessionactive atany timewith aratebetweenonehalf
of a link’ srateandthelink rate,regardlessof granularity.

For any given link rateandgranularity, we candeter-
mine the maximumnumberof ratesthat can be usedat
thesametime by summingthepossibleratesstartingwith
the smallestuntil the link capacity is met. For exam-
ple, a 150 Mbps link that supportsratesin multiples of
10 Mbps,

� � 6 ¯�� 6*¶ � 6��8�8��6�� µQ� 6�� ��� has15 different rates.
However, no more than5 may be active at one time be-
cause

� � ? ¯�� ?�¶ � ? µQ� ? ��� +w� ��� . In a systemwhere
any two ratesare

� ¯={!� % apart,anOC-3link canhave only
84 different ratesbetween20 cells per secondor 8Kbps
andthelink rate,of these66maybeusedatonce.

4 Hardware Implementation

Using the methodsoutlinedin this paper, we have im-
plementeda controllerfor a FORESystemsATM switch
8 port networkmodule.This controllerimplementsa rate
controlledvariationof WF

�
Q+ [15] to addresstherequire-

mentsof the serviceprovider marketplace.It shouldbe
notedthat a work conservingWF

�
Q+ schedulercouldbe

implementedwith the samecomplexity as the rate con-
trolledvariant.

The implementationprovideseachport with up to 64
different rate groups. Thereis only one instanceof the
schedulinghardwarewhich is sharedamong8 ports. The
scheduleris completelyself-containedand can schedule
anoutgoingVC in about500ns.Theimplementationwas
donein 3V 0.5um3LM CMOStechnology. Thescheduler
partof thechip operatesat 60MHz andrequiresonly 15K
gates. To supportall typesof service,beyond just those
requiringtight shaping,therearetwo staticallyprioritized
round-robinqueuesinto which UBR, ABR andVBR ses-
sionscanbequeued.It is importantto pointoutthatwecan
enqueuea VC into oneof theround-robinqueueseven if
it hasalreadybeplacedinto theStalledWF

�
Q+ scheduler.

So ABR andVBR VCs can be placedinto both servers,
wheretheratecontrollerwill provideany minimumband-
width guarantees,andtheround-robinwill allocatetheex-
cessbandwidth.

The exact implementationconsistsof two symmetric
blocksin the scheduler:eachonesearcheshalf of the 64
groups.In eachblock,thereis amemoryin whichthestart
timesof 32 of the 64 groupsarestored. 256 entriesare
neededfor the8-portconfiguration.Thereis alsoatimein-
terval tablewhich indicateswhatratehasbeenassignedto
eachof the64groups.Eachblockfindsthegroupwith the
smallestfinish time amongall eligible groupsthroughlin-
earsearchin 32 60MHz cycles.After 32 cycles,theeligi-
blegroupwith thesmallestfinishingtime in eachmemory
is found. Thetop level block will pick thefinal minimum
elementsamongtwo blocksandscheduletheheadVC of
the group. If thereis no eligible group,or the VC at the
headof thequeuefor theselectedgrouphasno cells,then
the schedulerwill servicea VC from the round-robin,if
oneexists. Sincethis canall bedonein 500ns,thesched-
uler is fully capableof OC-12(622Mbps)operation.

5 RelatedWork

Theideaof schedulingamongall rategroupsinsteadof
all sessionswasfirst proposedby Rexford et. al [9]. With
Rexford’s algorithm,sessionswith similar throughputpa-
rametersareplacedinto oneof a smallnumberof groups.
Twolevelsof schedulingarethenusedtoselectthesession.
At thetop level, eachgroupis scheduledwith a rateequal
to the sumof all the sessionsin the group. Within each
group,anefficient calendarqueuemechanismimplements
thesameFair Queueingalgorithmover all thesessionsin
thegroup. Therecanbetwo variationsof grouping.With
“static groupweights”, thegroup’s weight is setto bethe
sumof theweightsof all sessionsallocatedto thegroupre-
gardlesswhetherthey arecurrentlybacklogged.However,
this will affect theexcessdistributionpolicy andresultsin
unfair bandwidthallocation. To addressthis problem,a
heuristicbasedon “dynamic groupweights” is proposed,
in which the group’s weight is dynamicallyset to be the
sumof all sessionsin the group that arecurrently back-
logged. While Rexford et. al demonstratethat theaverage
behavior of the implementedalgorithm with this heuris-
tic is betterthantheexact implementationof SCFQ,it can
be shown that suchan implementationcan result in un-
boundedunfairnessin the worst case. The key problem
is that the groupweightsaredynamicallyadjustedbased
onwhetherthesessionis backloggedin thepacketsystem.
However, at any time instance,the setof the backlogged
sessionsin apacketsystemcanbequitedifferentfrom that
in the correspondingfluid system. Adjusting the weight
accordingto the setof backloggedsessionsin the packet
systemcanresultin largeerrors.This potentialdeficiency
of thealgorithmis briefly discussedin [9].

In contrast,our groupingtechniqueis usedsolely to
simplify the sorting of sessions.Schedulingis still per-
formedamongthe sessionsthemselves. This enablesour

mechanismto retain the fairnesspropertiesof the imple-
mentedalgorithm while incurring only a small increase
in the session’s delay boundthan would be provided by
a server withoutgrouping.

By observingthat the range of virtual times of all
sessionsat any given time is bounded,Suri, Varghese,
andChandranmemonmapthepriority queuemanagement
problemto that of searchingin a finite-universe[10]. In
sucha universe,a priority queuecanbeusedthatsupports
insert,delete,andsuccessorin

���©�����Q���������
time,whenthe

elementsarein therange ³ � 6*� ´ . This is a particularlyat-
tractive solutionfor algorithmswith SEFFpolicy (suchas
LVFQ and WF

�
Q+) while thereis a tight boundamong

the virtual timesof all sessions,i.e., the range
�

is quite
small. However, the

���©�����Q���������
resultholdsonly for the

priority queuebasedon virtual finish times, thereis still
theproblemarisingfrom theinteractionof thetwo priority
queues.In particular, whenever theserver is selectingthe
next packetfor service,it needsfirst tomoveall theeligible
packetsfrom thepriority queuebasedon eligibility times
to thepriority queuedon virtual finish times. In theworst
case,all

�
packetsmustbemovedbetweenthetwo prior-

ity queuesbeforeselectingthenext sessionfor service.

6 Conclusion

In this paper, we developtechniquesto reduceboththe
asymptoticandbasicoperationcomplexitiesof implement-
ing Fair Queueingalgorithmsin ATM networks.For fair
queueingalgorithm with the locally boundedtimestamp
property, we proposea groupingmechanismthat reduces
the complexity of sorting so that it grows as a function
of the numberof distinct ratesin the system. To reduce
the costof basicoperations,we proposea hardwareim-
plementationframework andseveralnovel techniquesthat
reducethe on-chipmemorysize,off-chip memoryband-
width, andoff-chip accesslatency. In particular, for Fair
Queueingalgorithmswith thegloballyboundedtimestamp
property, we presenta techniquethat compressesthe size
of thetimestamps,whichhaveto beaccessedfrom off-chip
memoryduring eachcell time, by ����� or more. These
techniquesintroduceslittle inaccuracy for theimplemented
algorithmsandmaybeusedfor any schedulingalgorithm
for whichthesepropertieshold,includingSCFQ,SFQ,and
WF

�
Q+. We describea hardwareimplementationwhich

canrunat622Mbpswith today’stechnology, for WF
�
Q+,

oneof themostaccurateFair Queueingalgorithms.

7 Acknowledgement

We would like to thankJenniferRexford for numerous
insightful commentsandsuggestions.

References

[1] J. BennettandH. Zhang. Hierarchicalpacketfair queue-
ing algorithms.In Proceedingsof theACM-SIGCOMM96,
pages143–156,PaloAlto, CA, Aug. 1996.

[2] J.BennettandH. Zhang.WFÎ Q: Worst-casefair weighted
fair queueing. In Proceedingsof IEEE INFOCOM’96,
pages120–128,SanFrancisco,CA, Mar. 1996.

[3] H. Chao.Architecturedesignfor regulatingandscheduling
user’s traffic in ATM networks. In Proceedingsof ACM
SIGCOMM’92, pages77–87,Baltimore,Maryland,Aug.
1992.

[4] A. Charny, K. Ramakrishnan,andA. G. Lauck. Scalabil-
ity issuesfor distributedexplicit rateallocationin atmnet-
works. In IEEEINFOCOM’96, SanFrancisco,Mar. 1996.

[5] S. Golestani. A self-clockedfair queueingschemefor
broadbandapplications. In Proceedingsof IEEE INFO-
COM’94, pages636–646,Toronto,CA, June1994.

[6] P. Goyal,H. Vin, andH. Chen.Start-timeFairQueuing:A
schedulingalgorithmfor integratedservices. In Proceed-
ingsof theACM-SIGCOMM96, pages157–168,PaloAlto,
CA, Aug. 1996.

[7] S.Keshav. A control-theoreticapproachto flow control. In
Proceedingsof ACM SIGCOMM’91, pages3–15,Zurich,
Switzerland,Sept.1991.

[8] A. Parekh. A GeneralizedProcessorSharingApproach to
Flow Control in IntegratedServicesNetworks. PhDdisser-
tation,MassachusettsInstituteof Technology, Feb. 1992.

[9] J. L. Rexford, A. G. Greenberg, and F. G. Bonomi.
Hardware-efficient fair queueingarchitecturesfor high-
speednetworks. In IEEE INFOCOM’96, SanFrancisco,
Mar. 1996.

[10] S. Suri and G. Vargheseand G. Chandranmenon.Leap
ForwardVirtual Clock. In Proceedingsof INFOCOM97,
Kobe,Japan,Apr. 1997.

[11] S.Shenker. Making greedwork in networks:A gamethe-
oreticalanalysisof switchservicedisciplines.In Proceed-
ings of ACM SIGCOMM’94, pages47–57,London, UK,
Aug. 1994.

[12] M. ShreedharandG. Varghese.Efficient fair queueingus-
ing deficit roundrobin. In Proceedingsof SIGCOMM’95,
pages231–243,Boston,MA, Sept.1995.

[13] D. Stilliadis andA. Verma.Designandanalysisof frame-
basedfair queueing:A new traffic schedulingalgorithmfor
packet-switchednetworks. In Proceedingsof ACM SIG-
METRICS’96, May 1996.

[14] G. Xie and S. Lam. An efficient channelschedulerfor
real-timetraffic. TechnicalReportTR-95-29,University
of TexasatAustin,July 1995.

[15] H. Zhangand D. Ferrari. Rate-controlledservicedisci-
plines. Journal of High SpeedNetworks, 3(4):389–412,
1994.

