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A Calculus for Network Delay, Part II:
Network Analysis

Rene L. Cruz, Senior Member, IEEE

Abstract —In Part 1 of this paper, several network elements were
defined that can be used to model a wide variety of communication
networks. A method to analyze the flow of data in a network consisting
of the interconnection of these network elements is now presented.
Assuming the data that enters the network satisfies burstiness con-
straints, burstiness constraints are derived for traffic flowing between
network elements. These derived constraints imply bounds on network
delay and buffering requirements. By example, it is shown that the use
of regulator elements (defined in Part 1) within the network can reduce
maximum network delay. It is also found that such a use of regulator
elements can enlarge the throughput region where finite bounds for
delay are found. Finally, it is shown how regulator elements connected in
series can be used to enforce general burstiness constraints.

Index Terms —Queueing networks, burstiness, flow control, packet
switching, high speed networks.

1. INTRODUCTION

OMMUNICATION NETWORK MODELS consisting

of the interconnection of network elements defined and
analyzed in isolation in Part I [7] are now considered in this
paper. Networks operating under a fixed routing strategy are
considered. A method is presented for calculating burstiness
constraints (as studied in Part I [7]) for traffic flowing be-
tween network elements, assuming that the traffic which
enters the network from external sources satisfies burstiness
constraints. Roughly speaking, if the traffic entering the
network is not too bursty, then the traffic flowing inside the
network is also not too bursty. These derived burstiness
constraints imply bounds on network delay and buffering
requirements, using the results of Part I. Examples are given
to illustrate the method.

We consider the use of regulator elements within the
network and find that such a use allows us to find much
smaller bounds for network delay than we can otherwise
obtain. In some cases such a use allows us to derive a larger
throughput region where our bounds for network delay are
finite. We show by an example that such internal regulation
can indeed significantly reduce maximum network delay.

The remainder of this paper is organized as follows. All
notation used in this paper is identical to that of Part L. In
Section I1 we present a method for analyzing an arbitrary
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interconnection of network elements. In Section 1II we con-
sider two contrived but illustrative examples of the method
presented in Section II. In Section IV we apply the analysis
to a class of multistage networks and investigate the effect of
employing regulation mechanisms inside the network. In
Section V we consider a more elaborate regulation mecha-
nism which results from the series interconnection of the
regulation elements studied in Part [ of this paper. Finally,
we conclude in Section VI with some closing remarks.

II. AnaLYsIS OF NETWORKS WITH
ARBITRARY TOPOLOGIES

We consider a model of a communication network operat-
ing in a packet switched mode under a fixed routing strategy.
The model consists of the interconnection of network ele-
ments. Specifically, the network elements can be delay lines,
receive buffers, demultiplexers, multiplexers, (o, p) regula-
tors, or FIFO queues. We assume the elements are con-
nected via error-free point-to-point communication links.

We assume that there are § ‘“sessions” labeled by the
integers 1 through S. There are M network elements, la-
beled 1 through M. Each switching node in the network is
modeled by one or more network elements.

Each session consists of the data traffic which originates at
some given node, exits at some other given node, and travels
along some fixed route between those nodes. We assume
that traffic from session k passes through H, network
elements before exiting the network. Let
H= max H,.
k=1.2,---.8

(2.1)

Let P(s,h) be the label of the Ath network element along
the route for session s. Define P(s,h)=0if h> H..

The rate of input traffic to the network for session s is
represented by R,. We assume throughout this section that

R~ (oy.p,) (22)

and that
RJ(t)=0
for any session s and for all ¢ <.
For 0 <h < H,, let R! represent the rate of traffic for

session s as it exits network element P(s, h). Define R" = R,
and

(23)

h_ pll,
R.\ - R.s

for H=h>H,.
Fix T>0. Fors=1,2,---,8 and h=1,2,---, H, define

al'= m‘;dzrl_WP‘(Rﬁ’)(u). (2.4)

§
0<
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We write R}(U,p) if for all s,r such that s <t <T there
holds

[IR(u)dzlso+p(t—s). (2.5)

It follows that
Ri(al,p,) (2.6)

for all s and k. Note that as long as T <« and (2.2) and (2.3)
hold, o is finite. Our objective is to find an upper bound
for ¢ for each value of s and h that is independent of T.
These upper bounds then imply that R ~(x%,p.) for all s
and h, where x” is the upper bound found for o,". Thus we
can then use the results of Part I of this paper to find bounds
on delay and buffering requirements at every network ele-
ment and hence bounds on total network delay. We proceed
now with obtaining upper bounds for a_,” that are indepen-
dent of T.

For all sessions s and 0 <h < H, we define the following:

INPUTS(s,h) ={(x,y): P(x,y +1)=P(s,h),

l<x<S8,0<y<H-1}. (2.7)

In words, INPUTS(s, 4) is the set of (x,y) such that the
traffic from session x enters network element P(s, h) imme-
diately after passing through y network elements. Thus, R}
represents the rate of a traffic stream which is an input to
the network element P(s, k) if (x,y) € INPUTS(s, h).

Given s, h with P(s, h)+ 0 we can use the results of Part I
of this paper to analyze the network element P(s, ) in order
to find burstiness constraints for R” that are valid before
time T, using the burstiness constraints of the input traffic to
the element that are valid before time 7. Specifically, we can
use the analysis of Part I of the paper to find 6., which is a
function of g for (x, y) € INPUTS(s, &), such that

RIH6/"p,). (2.8)
It follows from (2.8) and (2.4) that
gl'<dl, 1<s<S, 1<h<H. (2.9)

Since 6" is a function of & for (x,y) € INPUTS(s, k), (2.9)
describes a feasible region for o, where o is defined as the
SH dimensional column vector with components o) for
1<s<S§ and 1 <h < H. If this region is bounded, we can
obtain finite upper bounds, independent of T, for all of the
o/ as desired.

By using the results of the previous paper we can always
find &/, which satisfies (2.8) such that & is an affine
function of o) for (x,y) € INPUTS(s, ). The coefficient of
g} in 6! depends on p, for w such that session w passes
through network element P(s, #). (Although the expression
for 63," is simple for any given case, it is complicated to write
down an expression for it that holds in general, so we will

not.) We can then rewrite (2.9) as

o< Ao +c,

(2.10)

where the elements of the matrix A are nonnegative and
depend only on p, for all sessions s, and ¢ is a constant
vector, independent of ¢.

Now (2.10) can be rewritten as
(I- A)o<c. (2.11)

If the eigenvalues of A are strictly inside the unit circle, then

R, =R
! ! i 1
R — Rl + R 2 N
MUX 1 R
| \ N 1 |
R+ R_ +R
R, =R R
2 2 MUX 2 > DEMUX |— 2
R 1
R 3= R 3 ——— R3
Fig. 1. Network example 1.

(I — A)~ ! exists and

(I-A) '=1+A4+42+ A%+ . (2.12)
Hence (I — A)~! has nonnegative elements in this case.
Thus, we can premultiply (2.11) by (I — 4)~', and the in-
equality is preserved. Doing this, we obtain

o<(I-A) e (2.13)
Thus the boundedness of the region described in (2.9) is
related to the eigenvalues of the matrix A, which are in turn
related to the throughput allocations of the sessions using
the network. It can easily be shown that if the throughput
allocations are sufficiently small, then all eigenvalues of A4
are inside the unit circle. For example, if p; is replaced by
Ap, for all s, all eigenvalues of A are inside the unit circle
for A sufficiently small.

In many cases we can tighten the above results. Specifi-
cally, we can attempt to find more general constraints of the
form R" ~ b’ for all s, k. Such derived constraints may imply
smaller upper bounds on delay and buffering requirements
than the simple approach previously taken. Since we want to
keep things simple, we do not elaborate further on this.

11I. ILLUSTRATIVE EXAMPLES OF
NETWORK ANALYSIS

In this section we analyze two examples of specific net-
works. The examples are contrived, but yet hopefully illus-
trate the concepts discussed in the previous section. Addi-
tional examples appear in Section IV.

If there are no “loops” in the traffic pattern generated by
the routes of the sessions, then network analysis is quite
simple. Indeed, in this case all of the eigenvalues of the
matrix A defined in the previous subsection are zero. The
analysis in the previous section for general networks need
not be explicitly used; instead, the judicious application of
the results of Part I can be employed. To illustrate this,
consider the network illustrated in Fig. 1. The network has
two multiplexers labeled 1 and 2, and one demultiplexer.
Both multiplexers are assumed to be work conserving. The
output of multiplexer 1 feeds one input of multiplexer 2. All
links have transmission rate 1. There are three sessions; the
rate of input traffic for session k is represented by R, = R}(’.
Traffic from sessions 1 and 2 are input to multiplexer 1 on
different input links, and pass through both multiplexers
before being demultiplexed and exiting the network. Traffic
from session 3 enters the network through an input link of
multiplexer 2. Since no receive buffers are used, the model
for this network example is similar to the “cut-through”
model described by Kermani and Kleinrock [2].
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Fig. 2. Network example 2.

We assume that for each k& we have

Ry~ (o p1)- (3.1
Using Remark 4 after Theorem 4.5 of Part I we have
Ri+ Ry~ (ay+ 0y, py+p3). (3.2)

By Theorem 4.2 (in particular (4.13)) of Part I, D, is an
upper bound to the delay in multiplexer 1, where

o+ o,

D= (3.3)

l1=py—py

Now we have burstiness constraints for traffic at all points in
the network, specifically for traffic at the input to multi-
plexer 2, and hence can again apply Theorem 4.2 of Part I to
derive an upper bound D, for the delay in multiplexer 2:

D,= _ntoptos . (3.4)
1=p1=ps—ps

Thus the total network delay for sessions 1 and 2 is upper
bounded by D, + D,, and the total network delay for session
3 is upper bounded by D,. Upper bounds on buffering
requirements at the two multiplexers are also easily derived,
since we have derived burstiness constraints for the traffic at
the input to all network elements.

This style of analysis breaks down when there are loops in
the traffic pattern. In this case we can apply the theory
developed in the previous section. As an example, consider
the network illustrated in Fig. 2. The network consists of the
interconnection of four nodes, each of which has two input
links and two output links. Each node is modeled by two
work-conserving multiplexers and two demultiplexers, as il-
lustrated in Fig. 3.

The nodes are labeled 0 through 3, as illustrated in Fig. 2.
One output link of node k is fed to one input link of node
k +1 (mod4). All links have transmission rate 1. There are 4
sessions. The rate of input traffic for session k is repre-

\

DEMUX MUX

Yy

\

DEMUX

\

MUX

\

Fig. 3. Model of network node in network example 2.

sented by R, = RY. We assume that
Ry ~(a,p) (3.5)

for all k. In addition, we assume for simplicity that “L = 0,”
i.e., a fluid traffic model. By definition, session & enters the
network on an input link to node k and exits the network on
an output link of node k +3 (mod4) after traveling through a
total of 4 nodes. Thus there is only one multiplexer in each
node that has traffic entering both inputs; we label this
multiplexer k if it is contained in node k. For additional
simplicity, we assume that data from session k gets the
lowest priority at multiplexer k. Thus, if R} represents the
rate of traffic for session k after passing through j multiplex-
ers, then for each k we have

RL=R}=R}=Rj. (3.6)

This is because packets from each session only have the
potential for experiencing a nonzero delay at the first multi-
plexer encountered, where the packets from the session have
the lowest priority. At all other multiplexers encountered,
the packets have zero delay since they have priority and
since “L =0."

We assume R, (t)=0 for each session k and t <0. Fix
T >0 and let

ol= max W,(R})(u). (3.7)
O<us<T
Thus,
Rix(ol.p)- (3.8)

From (3.6) we obviously have ol=02=02=0¢ for all

sessions k.

Next we analyze multiplexer k. One input link carries
traffic whose rate is represented by R, the other input link
carries traffic whose rate is represented by R}, + Ry, .3
(using (3.6)), where subscripts are interpreted modulo 4.
From (3.8) we have R}, + Rk 3x(0l,,+04,3,2p). Thus,
from Theorem 4.5 (in particular (4.51)) of Part I, we have

RiFH 6l p), (3.9)
where
o} +a'l
a¢=a+p(%2;+3) (3.10)

and all subscripts are modulo 4. From (3.7) and (3.9) we have
(3.11)

ol <G}
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Combining (3.10) and (3.11) we obtain

o< Ao +te, (3.12)
where
T
o =(04,0/,0},01)", (3.13)
c=(0,0,0,0)", (3.14)
0 0 a «
_la 0 0 a
A=le « 0 ol (3.15)
0 a a O
and
p
= . 3.16
=12, (3.16)

Now all eigenvalues of A4 are strictly inside the unit circle if
and only if p <§. Thus, if p < we have

o<(I-A) 'c<w. (3.17)

Note our bound on o blows up at p = % Since three sessions
share each link, this corresponds to a maximum steady state
rate of 2 on each link, well below the transmission capacity
of 1 for each link. By considering a simple generalization of
this example, where K nodes in a ring are connected rather
than 4, we can find bounds which blow up when the maxi-
mum utilization on each link is about 3 when K is large.

This raises the following interesting question: For such
examples, what is the largest p such that network delays are
bounded? We might expect that the answer is 1/K —1; since
K —1 sessions share each link, this corresponds to a maxi-
mum utilization of 1. This question remains open for
large K.

It is interesting to note that if the switching nodes employ
regulators internally, as described in Section IV-B, then we
can derive finite bounds on delay as long as the utilization is
less than 1. This should become clear to the reader after
reading Section IV-B.

IV. UpPER BounDs FOR MaxiMum DELAY IN
BUFFERED MULTISTAGE NETWORKS

In this section we investigate the effect of using regulator
elements defined in Part I inside switching nodes. The net-
work model we study is the class of buffered multistage
networks. An example of a multistage network is the omega
network [3], [4] illustrated in Fig. 4. We will describe omega
networks precisely in Section 1V-C. A multistage network
consists of stages of switching nodes. Data packets enter the
switching nodes in the first stage and pass through a fixed
number of stages to reach their destinations.

We obtain bounds for delay in such muitistage networks
assuming buffers exist inside the network and the input
traffic to the network satisfies burstiness constraints. For
ease of exposition we consider a rather simple model. Fur-
thermore, the bounds we obtain are not the best that one
can derive using the techniques presented, but are simple to
derive.

In Section IV-A we study networks that do not employ any
flow control mechanisms internally. We find that the bounds
for network delay grow exponentially in the number of
stages. In contrast, Section IV-B considers networks with
switching nodes that employ the regulator elements as de-

P 1t t1 1t

Fig. 4. Omega network.

fined in Part I to control the flow of traffic between switching
nodes. This allows us to find much smaller upper bounds for
delay than that obtained in Section IV-A. Specifically, the
upper bounds for network delay are proportional to the
number of stages. In both Sections IV-A and IV-B, we
assume that multiplexers inside each switching node operate
with an FCFS service discipline. In Section IV-C, we obtain
analogous results assuming only that the multiplexers inside
switching nodes are LFCFS and work conserving. In this
case, the bounds for network delay behave identically to
those obtained in Sections IV-A and IV-B, depending on
whether or not regulator elements are used within switching
nodes. We describe a specific type of LFCFS work-conserv-
ing multiplexer, the exhaustive service multiplexer, for which
the bounds apply. We give a specific example using exhaus-
tive service multiplexers, where actual maximum delay can
indeed grow exponentially in the number of stages if regula-
tor elements are not used within switching nodes. Thus, we
demonstrate that the use of regulation mechanisms inside a
network can in fact reduce maximum network delay.

A. Delay in Unregulated Multistage Networks

We consider networks with N =2" inputs and N outputs
which use 2 X2 switching nodes. An example for n =3 is the
omega network in Fig. 4. Each stage has N /2 switching
nodes. We assume that therg are H stages. The stages are
numbered from 1 to H. The first stage accepts input traffic.
Outputs from the switches in stage s are linked to inputs of
the switches in stage s +1, 1 < s < H — 1. The outputs of the
switches in stage H are the outputs of the network. We
assume that all links in the network have transmission rate 1.

The model for traffic is as follows. We assume that there
are § sessions that are set up in advance. The rate of input
traffic of the ith session is represented by RY. For all i we
assume RY ~ (o, p) and that no packet is longer than L bits,
where without loss of generality (see (2.3) in Part I)

L< 2o . 7
1-p
For any switching node we assume that the number of
sessions that enter a given input link of the switch and exit a
given output link of the switch is not greater than k. Thus
the number of sessions sharing any link between successive
stages is at most 2k. We require that 2kp < 1. Let R} be the
rate function for the ith session as it exits stage s.
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> FCFS
— DEMUX >
MUX
FCFS
- DEMUX -
_ MUX
Fig. 5. Model for each 2 X 2 switching node.
R, ~(0%p"
1
"R 2 - (G‘, pm)
1
. FCFS .
P MUX 1
[ ]
R, ~(c"p"
1

Fig. 6. Illustration of fact. Fact: delay through multiplexer <(m —

DILp*+ o*(1—- p*)~']. Maximum packet length = L bits.

The switches do not employ receive buffers, that is, the
network operates in a cut-through mode. The model for each
switch, in terms of the network elements defined in Part I, is
ll]ustrated in Fig. 5.

Consider the FCFS multiplexer illustrated in Fig. 6, where
m streams on m input links are multiplexed onto a single
output link; all links have transmission rate 1. Packets on the
output link are transmitted in FCFS order. Suppose that for
all i the ith input stream has rate function R and that

i~ (a*, p*), where mp* < 1. We also assume that no packet
is longer than L bits and that

L<

1-p*

We use the following fact, which can be proved using argu-
ments identical to the proof of Theorem 4.1 of Part L.

Fact: It follows that the delay of any packet through the
multiplexer illustrated in Fig. 6 is upper bounded by

(m—l)[Lp*+ il }
1-p*

Theorem 4.1: For the model for a multistage network, we
have

Ri~(oy,p), foralli=1,2,---,Sands=1,2, -, H,

(4.1)

where

O'S=(1—kp)_5[pL(l—kp)+a'0] —pL(1-kp). (4.2)

Furthermore, the delay of any packet through a switch in
stage s is no more than D, where

D,=k(1-kp) ’[pL(1—kp) +ay]. (43)
Thus the total delay of each session is no more than
H
D= Y D, (4.4)
s=1
=[L(—kp)+opp ] [(1-kp) " —1]. (4.5)

Proof: We proceed by induction on s. The induction
hypothesis is that Ri ! ~ (o, _;, p). The base case s =1 holds
by hypothesis. Fix 1 < s < H. Fix any switch in stage s. Label
the input links to the switch as 0 and 1; label the output links
to the switch as 0 and 1. Let A4, , be the set of all i such that
session i enters input link x and exits output y of the given
switch. The two input streams for the multiplexer which
feeds output link y have rate functions

L R
t

€A,

r R

i€,

and

By the induction hypothesis, it follows that

Y Ry '~(ka,_y,kp)
i€Ad,,

(4.6)

for all x,y since |4, | < k. Thus by the previous fact using
m=2, 0*=ko,_; and p*=kp, it follows that the delay of
any packet through the switch is upper bounded by Dy,
where

D, ko kpL

= + :

sT 1= kp 4
Therefore, since the switch in stage s is arbitrary, it

follows by the induction hypothesis and Theorem 2.1 of Part

I that R} ~ (g, p) for all i, where

1 + pD:' (48)

Solving the recursion for all s given by (4.8) and (4.7), we
obtain (4.2). Equation (4.3) then follows from (4.7) and (4.2).
O

(4.7)

g =0,

Note that the bounds for the total delay grow exponen-
tially in H. It would be interesting to deterinine whether
actual delay can grow exponentially for this model. In Sec-
tion IV-C we give an example, for a different operation of
the multiplexers, where actual delay can grow exponentially.
In the next section we consider a different model of opera-
tion for the switching nodes that utilizes regulator elements,
and obtain bounds for the total delay that are proportional
to H.

B. Delay in Regulated Multistage Networks

In this section we assume the same model of a buffered
multistage network defined in Section IV-A, but we assume
that each switching node operates in a manner illustrated by
the schematic in Fig. 7. As the illustration suggests, we
assume that the sessions are all demultiplexed and then sent
through a (o, p) regulator before being multiplexed on the
appropriate output link. Note that o is a parameter of the
network.
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Fig. 7. Model for each 2 x 2 (regulated) switching node.

In this section we prove the following theorem. For conve-
nience, we assume that

o, < o‘[l +(2k —1)p(1 —p)_]]
+L[(2k-)p(1+p)+1—-p]. (4.9)

If this is not the case, then the results and the proof of the

theorem can be easily modified. We make this assumption so

that we can obtain a bound on delay in the first stage, which
is the same as the bounds for delay in all other stages.

Theorem 4.2: For the previous model, it follows that
‘ Ri~(a,p) (4.10)
forall i=1,2,---,8 and s =1,2, -+, H, where
F=o[1+ 2k -1)p(1-p) "]
+L[(2k—1D)p(1+p)+1—p]. (4.11)

Furthermore, the delay of any packet through a switch in
stage s is no more than D, where

~ ag
D;=L(p~'—1)+(4k ~2)[(1+p)L + 1—] (4.12)
-p
Thus the total delay of any session is upper bounded by

-~ H -~
D= Y D,

s=1

(4.13)

= H{L(p_' ~1) +(4k —2)[(1+p)L+ %]} (4.14)

Proof: Let R;™' represent the rate for traffic from
session i as it exits the (o, p) regulator in the appropriate
switch in stage s. From the results of Part I we can conclude
that Ri™'~(a +(1—p)L,p) for all i and s. Thus, using the
fact in Section IV-A with m =2k, o*=0 +(1—p)L, and
p*=p, we can conclude that the delay through any multi-
plexer in any switch is upper bounded D%, where

ag
D3=(2k-1) (l+p)L+1— . (4.15)
o],
Hence by Theorem 2.1 of Part I, we have
Ri~(7.p) (4.16)

for all i and s> 1, where o =0 +(1—-p)L + pD3. In fact,
(4.16) also holds for s =0 by our assumption (4.9) about o,
This proves (4.10). By (4.10) and our results for the delay in
regulators, it follows that the delay through any regulator in
any switch is upper bounded by D}, where

Di=p~ Yo -0) (4.17)

—(2k-1) (1+p)L+& +(p ' =1)L. (4.18)

Thus the delay through any switch in stage s is upper
bounded by
D+ D3=D,. (4.19)

O

C. Delay in Multistage Networks with LFCFS
Service Disciplines

In the preceding two sections we analyzed multistage
networks which used FCFS multiplexers. We can easily ob-
tain bounds on network delay when we require only that the
multiplexers are LFCFS and work conserving. Such bounds
are contained in Theorems 4.3 and 4.4. Since the analysis is
almost identical to that of the preceding sections, we omit
the proofs. )

Theorem 4.3: Consider the unregulated multistage net-
work of Theorem 4.1, where we now assume that the multi-
plexers are merely LFCFS and work conserving. All other
assumptions and notation are the same. It follows that

R} ~(g,,p), forall s=1,2,---,Hand i=1,2,"--,S,
(4.20)
where
G =(1-(2k-1)p) ’oy. (4.21)

Furthermore, the delay of any packet through a switching
node in stage s is upper bounded by D,, where
b= Koo
1-(2k —1)p
=2k(1-(2k -1)p) ’o,. (4.23)

Finally, the total delay of each session is no more than
A H A
D=Y D,

s=1
y 2k
=p o[ (1-(2k —1)p) —1][2k_1]. (4.25)

We will give an example to show that delay can indeed
grow exponentially in the number of stages. First we state a
much smaller upper bound that holds when regulator ele-
ments are used inside switching nodes.

(4.22)

(4.24)

Theorem 4.4: Consider the regulated multistage network
of Theorem 4.2 where we now assume that the multiplexers
inside each switching node are merely LFCFS and work
conserving. All notation and other assumptions are the same
except that we assume

o+(1-p)L

—_— 4.26
0('s1*(2k~l)p ( )
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000 —» L » 000
001 — — 001
010 ——» L » 010
011 —¥ —» 011
100 —» -—» 100
101 —» —® 101
110 —— 110
119 — — 111

Fig. 8. Example of port labeling scheme for single stage.

It follows that

Ri~(a',p), foralli=1,2,---,Sands=1,2,- -, H,
(4.27)
where
oc+(1-p)L
Gl 4.28
7Tk -1p (4.28)
The total delay of each session is upper bounded by
. (0d'—0) 2k(oc+(1—p)L
D'=H ( ( L) (4.29)

+
P 1-(2k-1)p

The remainder of this section is devoted to an example of
an unregulated multistage network where the maximum de-
lay can indeed grow exponentially in the number of stages.

We formally define the binary omega network with 2"
inputs as follows. As the name suggests, the network has
N =2" inputs and N outputs. The network consists of nN /2
2X 2 switching nodes. The nN /2 switching nodes are parti-
tioned into n groups of N /2 switches. Each group is re-
ferred to as a stage. Each 2 X2 switch has 2 input ports and 2
output ports. We number the input ports of any given stage 0
through N —1, inclusive. The output ports of each stage are
labeled similarly. The numbering is done such that the labels
of the input ports belonging to the same switching node are
consecutive and that the output ports of any switching node
have the same labels as the input ports to that same switch.
It is convenient to represent the label for any input or output
port by its binary expansion. An example of the port labeling
scheme is shown in Fig. 8 for the case n = 3.

The stages are numbered 1 through n. The interconnec-
tion of switching nodes is such that all of the output ports of
stage i, 1 <i<n—1, are connected to all of the input ports
of stage i+1 as follows. The output port (a,_,,a,_ """,
a,,a,) at stage i is connected via a directed link to the input
port (ay,a,_,a, ,, -, a,,a,) at stage i + 1. This intercon-
nection between stages is commonly referred to as a “reverse
shuffle.” The input ports to stage 1 serve as the N “inputs”
to the network; the N output ports of stage n serve as the
“outputs” of the network.

For convenience, we label each link connecting switching

nodes as follows: for 1 <s<n, (s;a,_, a, a,) is the

label for the link between output (a, , a, , a, ag
a,_,) in stage s and input (a,_, a,_, a,) in stage
s + 1. Sources are connected to the inputs of the network in
stage 1, and destinations are connected to the outputs of the
network in stage n. We also label the sources and destina-
tions by binary sequences of length n. The link connecting
source a to input a in stage 1 is labeled (0; a). By conven-
tion, the destinations are said to be in stage n+ 1. Thus

(n;a,_, a, a,) is the label for the link between output
(a,_» a,_; a, ay a,_,) in stage n and destination
(a,_, a,_, ay). It is easily verified that there exists a

unique path between any source and any destination.

Consider a binary omega network with N =2" inputs, as
previously described. Each switching node is modeled as in
Theorem 4.3 (see Fig. 5) and the multiplexers use an “ex-
haustive” discipline (we also assume that the multiplexers
are LFCFS and work conserving). This means that once a
multiplexer starts transmitting data from an input stream, it
continues to transmit data at maximum rate from that stream
as long as possible (i.e., without violating the work conserv-
ing assumption) before transmitting data from another input
stream. As an example, consider an exhaustive multiplexer
with two input links. Suppose the input and output links
have transmission rate 1 and that the “L = 0" model is used.
Let the rates of input streams 1 and 2 be represented by R,
and R,, respectively, and let R and RY™ represent the
rates of streams 1 and 2 as they exit the multiplexer. Thus
R{™ + R$" represents the rate of all the traffic flowing on
the output link of the multiplexer. For x > 0 define the unit
pulse of length x, P, as

0, t <0,
P()={1, 0<t<x, (4.30)
0, t>x,

for all ¢. For x >0 and integers k >0 define the function
hx,k as

By (1) = PLO)Y + pPoya et -1 = X)

=P\‘(t)+pr():f,,a’)(t_x) (431)

for all 1, where p is a given constant satisfying 0 < p <1/2
and o =(1— p)~'. Suppose that for all ¢

R(t)=h (1) (4.32)

and
Ry(t)=h, o(1) = P(1), (4.33)

where x >0 and k > 0. At time zero, data begins to arrive
from both streams at rate 1. Suppose the multiplexer begins
to transmit data from stream 2 at time zero. As a conse-
quence, the multiplexer must continue to transmit data from
stream 2 until time x. At time x, the multiplexer must begin
to transmit data from stream 1 at rate 1. It can do so for xa
units of time, since x bits from stream 1 are queued at time
x and these bits are depleted at rate 1 — p. Thus we have

RYM(1) = hyy joi(t = x) (4.34)
and
RSU(1)=R,y(t)=h, (1), (4.35)

for all ¢. In the following, the basic idea is to recursively
utilize this example ((4.32)-(4.35)) for the operation of the
exhaustive multiplexer.
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Given any binary sequence a=(a, _, a,_, a, a,)of
length n, define the operators (<), (<), and f,, as
( (—(l)a= (an—Z a,-3 a 0)7
(‘_l)a:(aan a,_3 ag 1)’

fma=(anf| st Ay G a(l)v

where @ denotes the complement of a. Also define ¢a to be
the number of trailing (least significant positions) zeros of a.
Thus, for example, if the least significant bit of a is one, then
for 0 < m < n there holds &( «<)"a = m. Finally, define the
operator 8, for 0 <m<n by 6,a=@l(«,)"al—m for all
a<s{0,1}".

We suppose that there are N sessions, each entering the
network at a different input: the session a that enters at
input a is routed to destination (<« )a. Let RY represent
the rate of traffic from session a as it enters the network,
and let R represent the rate of traffic from session a as it
exits stage m. We assume that

Ra~(ay:p) (4.36)

for all @ €{0,1}", where o, and p are given constants with
0 < p <. We also assume the “L = 0" model of traffic. Let
gna be the label of the link between stage m and stage
m +1 in the unique path from input a to destination ( < )a.
Thus for example,

goa=(0;a,_, ay agy),
gla=(1;0 4y a; al)’
ay a,),

ga=(2;ay 0 a,_;

gn-laz(n_];an—3 a, ay 0 an—l)’

g,a=(n;a, a, a, 0).

A moment’s look at this reveals that there are at most two
sessions that flow through any link. For example, only ses-
sions a and f,a pass through link g, ,,a, and half of the
links between any two stages are unused. Thus Theorem 4.3
applies with k£ =1.

We now give a specific example for RY, a €{0,1}", satisfy-
ing (4.36), which leads to possible network delay growing
exponentially in n. Let

R)=h, 4, forallae{0,1)", (4.37)

where
w= 0'1)(1*9)_]~

We show by induction on m that the following holds for all
acs{0,1}, t,and all m=0,1,2,-- -, n:

m
:':—" )’”a(’) = hn”’w.()ma(r - ( Z ajl)w)

ji=1

a™—1
:h“”.w_gma(t—w -1 )

a

(4.38)

To prove (4.38), we assume that whenever a multiplexer
begins to receive data from both streams at the same time at
full rate, the stream from the input link which has “1” as a
least significant bit in its label is transmitted first. The base
case m =0 holds by hypothesis. Suppose then that (4.38)
holds for some fixed value of m. We now show that it also
holds when m is replaced by m +1.

Fix a. Now the stream whose rate is represented by

m+l1
R(ﬁ')m+la

is transmitted on link g,,.((<y)""'a), multiplexed to-
gether with the stream whose rate is represented by

m+1
Sol oY la

Thus the rates of the input streams to the multiplexer that
feed link g,,,,((<)™"*'a) are represented by

R;)L'u yrr 'a
and
m
fol =) a
Now
1 i
( ‘_())m+ a=( ‘_(1)’ («g)a
and
+ 1 m
fnl ‘_n)m a=(+<y) (<pa.
Thus, since

’ em( <_())a = onH—la +1and Bm( (_l)a = 07

it follows from the induction hypothesis that

m
RY (e yral) = hamw.o(t - ( z a"")w) (4.39)

j=1
and

m
RE':_“ )'"“a(t) = ha"’w.ﬂ,,,¢|a+l(t - ( Z a}—l)w)’ for all ¢.

j=1

(4.40)

Since session f,(<,)"*'a enters an input of stage m +1
whose least significant bit is 1, traffic from this session
commences transmission on link g, ((«<,)""'a) at time

m .
Y ool 'w

i=1
and continues for a™w units of time. Thus

m+1

Y af')w). (4.41)

j=1

m+1 _
Cop ka(t) = ha""'w‘ﬂ,,,ﬂa(t — (

Since a is arbitrary, this completes the proof of (4.38). Now
note that (4.38) with m =n implies that no traffic from
session (0 0 0) reaches its destination until time w(a”
—1Xa —1)"". Hence delay can indeed grow exponentially
in n.

In summary, we have seen in this section that the use of
regulator elements inside switching nodes enables us to
obtain smaller upper bounds to delay than we can otherwise
obtain. We have also demonstrated that such a use reduces
actual maximum delay when an exhaustive service discipline
is used in the multiplexer. It would be interesting to deter-
mine if a similar statement can be made for the FCFS service
discipline. Another interesting problem is to investigate the
effect of such use of regulator elements on average delay.

V. REGULATOR ELEMENTS IN SERIES

- In this section we investigate the effect of connecting
regulator elements in series. Lemma 5.1 of Part I will play a
key role in this section. Consider a system as illustrated in
Fig. 9. For simplicity at first we assume that all of the
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R, R

R R

1 2 n-1 n
—»— (c,.p)——(c,.p)—» .. >—(0,.p)—>—
C 1 1 C 2 2 C C n n C
Fig. 9. Tllustration of (o. p) regulators connected in series.

regulator elements are (o, p) regulators and all links have
the common transmission capacity C; later we will study
what happens when one of the regulator elements in the
chain is a FIFO queue. R, represents the rate of the traffic
output of the kth regulator and R, represents the rate of
the traffic input to this system. Let dj‘k) be the difference in
the time that the jth packet begins to exit the kth regulator
and the time it begins to arrive to the system. Thus for all k
we have

R(1)=C Y Iy eavrarascatier, ey
j=1
where for all j, d{”=0, s; is the system arrival time for
packet j, L; is the length in bits of packet j, and s;+L;/C
<5,
S S8ip

Theorem 5.1: For all k =1,2,---,n there holds:

a) W, (R Ns; +d™) <oy, i=1,
b) Ru ~ (Uk +(- pk/C)L7 Pk),
1
¢) dg'k): mzax [—(Wp (R(,)(sl-)—cr,,,)+ , J=zL
‘ | p |

m=1,2,"", m
Remarks:

1) Note that b) implies that

fyR,,(u) du

< _min (o +(1=p/C)L+p(y = X))
for all y > x. Thus, the output traffic of the entire
system satisfies this constraint and the entire system
can be thought of as a regulator. More generally, if b is
a concave and increasing function defined on the non-
negative real line we can lower bound b:

b(t)>= min (T, + pit)
k 2,- ,n

for all + and appropriate choice for the &,’s and the
pi’s. We can make the inequality as tight as we wish by
choosing n large. If we wish to regulate a traffic stream
R, to produce an output stream R,, which approxi-
mately satisfies

R, ~b,
(the approximation gets better as L approaches 0) we
can simply use this type of system to perform the
regulation.
Note that by ¢), d!"” is the maximum of » terms. The
kth term is the delay that would be incurred by the jth
packet if the input stream were fed to a single (oy, p;)
regulator alone.
Note that 4¢” does not depend on the order in which
the regulators are connected. Thus, the input-output
behavior of the system is invariant with respect to
reordering of the regulators.
The implementation of the entire system need not
consist of n ‘“separate” regulators. We could simply
delay the jth packet by d{™ as given in c).

2

~

3

~

4

~

5) In view of c) and the definition of the (o, p) regulator,
the entire system gives the smallest possible delay for
each packet among all systems that retransmit packets
in FCFS order and produce an output stream R,
satisfying a) for all .

Proof of Theorem 5.1: To prove a), we apply Lemma 5.1
of Part I n times: in the mth application we use R, _,R,,,
s+ dTD s 4 di, d —d" D, p, in place  of
Ry. R\, s;,;,d;, p, respectively. This implies

_ +
Wi(R,) (s +d™) = [Wo( R (5)) = pd(™]
forall pand m=1,2,---,n. (5.1)
In particular, it follows that
u/;“( Rm)(sj + d}"l))

is nonincreasing in m for each fixed j and k. On the other
hand, by virtue of the regulation in the kth regulator we
have

W, (R)(s;+d*) <a,.

Thus a) follows.

By the remarks about the (o, p) regulator in Part I, b)
follows easily from a).

We prove ¢) by induction. It holds for £ =1 by (5.3) of
Part I. Suppose that it holds for some fixed k; we now show
it still holds when k is replaced by k +1. By (5.3) of Part I
and (5.1) in this paper we have

k k n]* *
dik D —d® = —— (W, (R)(5) = paid®] =) -

Pk +i
(5.2)

Now if d}k*”—d}")>0 then all plus sign superscripts in
(5.2) can be removed, yielding

d,(‘kﬂ): (pk+l)—l(WpAH(R())(sj)_Uk+l) > d;‘k)-

On the other hand, if dj(k“’ - d}"" =0, it follows from (5.2)
that

(Pk+1)_l(WpM(Ru)(5j) - ‘Tk+1) Sd;‘k)

and hence

_ +
(prs)) (W, (R)(s) =0y yy) <d®,

since di*)> 0.
It follows that

3 — +
dD = max(d®), (pg ) (W, (Ro)(s5) = aii1) ).
This completes the induction step. O

If we wish to construct a regulator, in the general sense of
Remark 1), which produces an output stream on a link with
transmission rate smaller than that of the input link to the
regulator, we could simply feed the output of a system such
as in Fig. 9 into a FIFO with the appropriate input and
output transmission rates. For example, consider the system
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RO Rl R2 Rn—l Rn Rn+l
—_—e—1(c.,p) > (0,.p,) - —» (6,,p )1 FIFO [—%»—
C 1 1 C 2 2 C n n C. C

m in Cln in n out
(a)
R() Rn+1
—»— FIFO —Cb—— (©,,p) P (0,.p > -+ ¥ (cn,pn)~—g—
Cin out Cout Cout Cout out
(b)

RO Rn+1
—»— (0,.p) [P FIFO 4 (0,.P) ¥ 'C—’— (CnsPn) —g—
Cin Cin out out out out
(©)

Fig. 10. (a) lllustration of general regulator. (b) Another implementation. (c) Another implementation.

in Fig. 10(a). The total delay for the jth packet in the input
stream R, using the usual notation to define Ry, is given by

dy" = max

1 + _
m=1,2,--,n+l Pm(mjm(R”)(Si) Ul") ' J=l
where o, ., =0 and p, ,, = C,,. The output traffic R, , of
this entire system satisfies R, ~ (o, +(1—p, /Co, )L, pi)
for all k=1,2,--+,n+1. Using the same reasoning as in
Theorem 5.1, we can analyze the systems in Figs. 10(b) and
10(c). We then see that the input—output behavior of all
three systems in Figs. 10(a), 10(b), and 10(c) are identical.
The remarks following Theorem 5.1 apply to these three
systems as well.

In fact, the FIFO in Fig. 10(c) can be inserted between any
of the (o, p) regulators, and the input-output behavior of
the entire system remains unchanged. Of course, all links
preceding the FIFO should have transmission rate C;, and
all links following the FIFO should have transmission rate
C

out*

VI. CoNcCLUSION

In this paper, we have presented a fairly general model for
communication networks. Our model differs from most in
our assumptions about the traffic entering the network,
which is assumed to be unknown rather than random.

Our model allows us to easily obtain bounds for network
delay, buffering requirements, and throughput. This con-
trasts with other models, where it is often difficult, if not
impossible, to perform an exact analysis. The overall
methodology of analyzing network elements, first in isolation
and then relating the results, gives a powerful way of gener-
ating bounds. To obtain tight bounds, however, it may be
necessary to analyze the network as a whole at the outset.
An example of such a study in the context of dynamic
routing with our traffic model is given in [5]. As another
example, Sasaki [6] effectively considers the strong coupling
between receive buffers with attached multiplexers.

We believe the open problems we have encountered in the
analysis for our model are of considerable theoretical inter-
est. Among the most interesting open problems we have
encountered is the identification of throughput regions where
network delay is bounded. So far, we have only obtained
bounds on such regions that may well be somewhat loose.

We have found that the use of regulation elements inside
switching nodes allows us to obtain larger throughput regions
than we have otherwise obtained, and we have given an
example where actual maximum delay is substantially re-
duced by such use. An interesting problem is to determine
the effect of such regulation on average delay.

A worst case analysis, which is in a sense what we have
done, may be appropriate in many types of parallel and/or
distributed computing applications. However, such analyses
can be overly pessimistic and lead to “over-designing” in
other applications. Although the traffic model we have con-
sidered is quite general, it only partially characterizes traffic.
This leads to the interesting topic of synthesizing new traffic
models that further characterize traffic in a useful way. We
feel that the model presented here can be combined with
statistical models to obtain useful and interesting results.

ACKNOWLEDGMENT

The author would like to thank Prof. Bruce Hajek for
many helpful discussions. Thanks also to the Associate Edi-
tor, the anonymous referees, M. C. Chuah, and D. Roberts,
who have all made comments that have been very helpful in
revising the manuscripts.

REFERENCES

[1] R. Cruz, “A calculus for network delay and a note on topologies
of interconnection networks,” Technical report UILU-ENG-87-
2246, Coordinated Science Laboratory, Univ. of Illinois at Ur-
bana—Champaign, 1987.

[2] P. Kermani and L. Kleinrock, “Virtual cut-through: A new
computer communication switching technique,” Compuzer Net-
works, vol. 3, pp. 267-286, 1979.

[3] D. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145-1155, Dec.
1975.

[4] D. Mitra and R. Cieslak, “Randomized parallel communications
on an extension of the omega network,” J. ACM, vol. 34, no. 4,
‘pp. 802-824, Oct. 1987.

[5] R. Cruz and M. C. Chuah, “Worst case analysis of a simple

routing problem,” Proc. 28th IEEE CDC, pp. 2560-2566, Dec.

1989. Also submitted to IEEE Trans. Automatic Contr.

G. Sasaki, “Input buffer requirements for round robin polling

systems,” Proc. 27th Ann. Allerton Conf. Commun., Contr., and

Computing, Monticello, IL, Sept. 27-29, 1989.

R. L. Cruz, “A calculus for network delay, Part I: Network

elements in isolation,” IEEE Trans. Inform. Theory, vol. 37, no.

1, pp. 114-131, Jan. 1991.

[6]

Yl



