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Abstract

We describe an ejjicient fair queuing scheme, Leap

Forward Virtual Clock, that provides end-to-end delay

bounds simdar to WFQ, along with throughput fair-

ness. Our scheme can be implemented with a worst-

ca.se time O (log log N) per packet (inclusive of sort-

ing costs), which improves upon all previously known

schemes that guarantee delay and throughput fairness

similar to WFQ. Interestingly, both the classical vir-

tual clock and the Self- Clocked Fair Queuing schemes

can be thought of as special cases of our scheme, by

setting the leap forward parameter appropriately.

1 Introduction

The study of’ service disciplines in integrated ser-

vices networks has gained significance with the emer-

gence of multimedia applications and electronic com-

merce. Unlike traditional data applications, real-time

applications such as video-on-demand and teleconfer-

encing must meet stringent quality-of-service (QoS)

standards to be successful. In an integrated services

network, applications with widely different communi-

cation rates (ranging from few bits to several megabits

per see), traffic patterns, and QoS requirements share

communication links. This makes it difficult to pro-

vide good bounds on end-to-end delay and bandwidth.

With many delay-sensitive traffic sources contend-

ing for bandwidth, a service discipline must provide

a fast and effective mechanism for servicing packets

so that real-time traffic is not affected by non-time-

critical traffic such as file transfer. Also, both kinds

of traffic must receive a (preset) fair share of band-

width. A lack of “firewalls” can result in a rogue traf-

fic source (either a misbehaving user or malfunction-

ing device) unjustly penalizing well-behaved sources.

In today’s Internet, for instance, a rogue user can

send data at an uncontrolled rate, and seize a large

fraction of the available bandwidth at the expense of’

“good” users. Weighted Fair Queuing( WFQ) [5] is a

benchmark for comparing properties of packet sched-

ulers. WFQ, however, requires O(N) time to schedule

a packet, where N is the number of concurrent flows

at a router. Other algorithms [14, 2] equivalent to

WFQ require O(log N) time per packet. Our main

result is a service discipline called Leap Forward Vir-

tual Clock (LFVC) whose delay bound and throughput

fairness is almost identical to WFQ, but whose compu-

tational overhead is only O(log log N) per packet. Our

O(log log N) time bound is worst-case and includes all

sorting overheads. O(log log N) is a small constant

for all practical purposes—for instance, log log N < 5

for all N < 4 * 109; the underlying constants are also

quite small.

Bennett and Zhang[l] introduced a more refined

form of fairness called worst-case fairness (WFI). They

showed that even WFQ could exhibit burstiness (i.e.,

high WFI), and described a scheme called WF2Q that

has optimal WFI. Our LFVC scheme has a WFI com-

parable to WF2Q, Thus Leap Forward Virtual Clock

appears to be the first service discipline that achieves

near-ideal delay and throughput bounds, bu~t has a

computational overhead smaller than the O(log N) of

prior schemes. We summarize the salient features of

previous algorithms in Table 1, and compare them to

our Leap Forward scheme. A detailed comparison can

1in contrast with some existing algorithms whose 0(1) time

complexity bound accounts only for “tag computation” and not
the additional O(log N) cost for sorting
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Scheme Delay Bound Fairness Worst-case Fairness Efficiency

GPS[1O] o Fair Excellent Impractical

WFQ[5] Small Fair Poor O(N)

SCFQ[9] Large Fair Poor O(log N)

Virtual Clock[17] Small Unfair Poor O(log N)

Deficit Round Robin[12] Large Fair Poor o(1)

Frame Based FQ[14] Small Fair Poor O(log N)

WF2Q[1] Small Fair Good O(log N)

Leap Forward VC Small Fair Good o(loglog N)

Table 1: A comparison of several well-known scheduling algorithms. By a “small” delay, we mean a delay that

is only a small additive constant larger than GPS delay, while “fair” throughput is fairness comparable to that

of S CFQ or GPS. By poor worst-case fairness, we mean a worst-case index that grows with the number of flows.

be found in [15].

The paper is organized as follows. In Section 2, we

formulate two conditions which are necessary and suf-

ficient to guarantee WFQ-like delay and throughput

bounds. In Section 3, we introduce our main algo-

rithm, Leap Forward Virtual Clock (LFVC). We prove

end-to-end delay bounds in Section 4, and throughput

fairness in Section 5. In Section 6, we describe tag

coarsening and how it leads to an O(log log N) time

implementation. In Section 7, we report on simulation

experiments, and conclude in Section 8.

2 Virtual Clock Service Disciplines

Service disciplines based on a virtual clock work by

assigning a tag (deadline) to each packet, representing

the clock value by which the packet must be trans-

mit ted. Packets are serviced in non-decreasing order

of tags. It is true but not obvious [7, 16] that such

a scheme meets all tag deadlines. We have isolated

two fundamental conditions that underlie delay and

throughput guarantees. Our Leap Forward Virtual

Clock scheme is an instance of’ a class of service disci-

plines that derive from these conditions. In particular,

by setting parameters appropriately, both classical vir-

tual clock [17] and Self-Clocked Fair Queuing [9] can

be derived as special cases.

We begin with some useful notation. A flow is a

logical connection between a source and a destina-

tion. Each packet in a flow carries the ID of the flow.

Packets in a flow pass through a sequence of servers

(or routers) along their path. We will later use the

framework of guaranteed rate clock (GRC) algorithms

introduced by Goyal et al. [8], to establish W FQ-like

bounds on end-to-end delay. With this framework, it

suffices to establish the delay bound at a single server.

Hence, we concentrate on a server S, with output rate

B bits per second.

Let j’l, fz, . . . , ~AI denote the set of flows that are

serviced at S, where flow fi has a guaranteed rate of

ri bits/see, and ~~=1 ri ~ B. The sequence of’ pack-

ets in a particular flow f is denoted p;, p?, . . . , p!, and

their sizes (in bits) are denoted 1}, l;,. . .,$. We also

use the notation l(p) to denote the length of p. We

assume S is work-conserving: S does not idle when

there is some packet to send. The virtual clock as-

sociated with the server is a counter that keeps track

of the bits sent out by S. The output rate of S is

B bits/see, and thus servicing a packet p of length 1

increments the clock by //B. Every packet to be ser-

viced by S receives a tag, indicating the server clock

value by which it must be serviced. The tag of the jth

packet in flow f is denoted T(X).

Let t,denote the current server time (clock value)

at any instant. The arrival time of a packet #j, de-

noted A(~~ ), is defined as the server time when #f

reaches the head of its flow queue. Let t~reu denote

the tag of the last packet sent by j’; it is zero if no

packet of f has been sent. We define the tag of #f as

follows:

p l!;
T(zJ~) = Max{ A(p}), T(P~–l )}+; = max{~~e”, t,}+=.

(1)

Next, we define the current tag of a flow f, denoted

tf. We say a flow f is active if it currently has at least

one packet in its queue. Otherwise, f is called icf~e.

If f is active, let pf denote the packet at the head of

f’s queue, and lf the length of pj in bits; this is the

current packet for f. The current tag of f is defined

as follows:
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tf =
{

T(pf) if ~ is active

max{t~’e”, t$} otherwise

Finally, we define an important parameter Af for

each flow ~:

omax

Af=~
rj ‘

(2)

where !~ac is the size of the largest packet in flow f.

Note that Af is the time needed to send the largest

packet by a flow at its guaranteed rate. Lastly, we use

the notation i- to denote the time to transmit a largest

packet at the server rate; thus, ~ = ~, where M is

the size of the largest packet across all flows.

2.1 Delay Bound for Virtual Clock

Classical virtual clock[17] assigns a tag to each ar-

riving packet using Eq. (1), and services packets in

non-decreasing tag order. If one can show that each

packet is transmitted no later than its tag value, then

the GRC framework of Goyal et al. [8] provides a good

end-to-end delay bound. We distill a fundamental in-

variant, called Backlog Inequality, that is essential to

ensuring that a packet is serviced by its tag. Our

analysis is new and simple; more importantly, it leads

directly to our new scheme.

Let t be an arbitrary server time such that t ~ t,

and consider the time window (t$, t). The Backlog In-

equality relates the backlog (both packets waiting and

potential future arrivals) that must be serviced within

the time window (t., t) and the amount of bandwidth

available: B x (t – t~).A service discipline can meet

all tag commitments only if the available bandwidth is

no less than the backlog. Fig. 1 depicts the inequality.

Tag for flow f
Arburaty

future time

t~ y
t

I *

Server Clock Slack for flow f “

Figure 1: The Backlog Inequality.

More formally, let @t denote the set of all flows

whose current tags have value at most t:

@t={fltf <i}.

Thus @t is the set of flows whose most recent packet

to receive service has tag less than t. These are the

flows whose packets might need to be serviced before

server clock reaches t.

[Backlog Inequality:] Given a server S with output

rate B, the current server time t$ and a future server

clock value t, we say that the Backlog Inequality holds

if’:

fc~, fe@i

On the left hand side, the first term is the current

backlog, and the second term is the potential backlog

or slack. The right hand side represents the available

bandwidth in this time window. Later, we will show

that any service discipline that maintains the Backlog

Inequality guarantees a WFQ-like delay bound.

2.2 Delay and Throughput Conditions

The virtual clock discipline is known to suffer from

throughput unfairness. The problem is causeci by un-

bounded deviations between the server clock and a

flow tag, which can happen when some flows send

packets in bursts while others remain idle. (See [13]

for examples.) Surprisingly, Bennett and Zhang [1]

show that even WFQ exhibits a form of bursty behav-

ior. Leap Forward Virtual Clock avoids both forms of

unfairness. We show that a service discipline should

satisfy the following delay and throughput conditions

to deliver WFQ-like delay bounds and a goocl worst-

case fairness index.

[Delay Condition:] A service discipline satisfies the

delay condition if it satisfies the Backlog Inequality at

all times.

[Throughput Condition:] Let k be a constant in-

dependent of N. A service discipline satisfies the

throughput condition if each flow f satisfies the fol-

lowing condition at all times:

tf < t,+k. Aj.

These conditions are necessary for a virtual clock

scheme to guarantee delay and throughput bounds

similar to WFQ. Later, we establish the sufficiency

of these conditions. These conditions motivate our

Leap Forward algorithm, which modifies classical vir-

tual clock by introducing two key ideas (quarantine

and leap forward).

3 Leap Forward Virtual Clock

Our algorithm uses a strategy employed by par-

ents for disciplining children: take them temporar-

ily offline. For us, a flow in possible need clf disci-

pline is one that has recently received more than its

allocated share of the bandwidth; the tag of such a

flow might violate the Throughput Condition. We

call such a flow oversubscribed. Any packets for an

oversubscribed flow are placed in a holding area L
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(see Figure 2). Other well-behaved flows are placed

in a priority queue H. The server picks the packet

with the lowest current tag in H for servicing next.

We note that the lowest tag in H may very well be

bigger than the lowest tag in L, yet the packet from

H is serviced first. The data structures H and L can

be thought of’ as High and Low priority queues.

I~: Priority Queue of Active

t-

ServicePacket

Well-Behaved Flows
with Lowest
tag in H

Transfer before

I

Transfer when
a packet can a flow becomes
miss its deadhne. oversubscribed,

t
1 I

I ~. Holding Area for Active
“ Oversubscribed Flows I

Figure 2: A conceptual picture of Leap For-

ward Scheme.

Just as children are forgiven after a ‘(time off” pe-

riod, we need to eventually transfer an active flow from

L to H. How long can we wait before doing so? We

must transfer f before we violate the delay condition.

If f is a flow in L and p is the packet at the head of

its queue, a safe test for keeping f in L is:

We must transfer f to H before this condition is vio-

lated. We show that this transfer policy maintains the

delay condition, and every packet is serviced no later

than its tag.

Thus, our scheme transfers a flow to L when it is

likely to cause a throughput problem, and restores it

to H before the delay guarantee of its packet can be

violated. There remains, however, one problem: what

happens if all flows are oversubscribed, and therefore

H is empty? To be work-conserving, we must transmit

a packet; yet there is no eligible packet. This brings

us to the second important feature of our algorithm.

When H is empty, we advance the server clock as far

forward as possible without violating the delay tnvart-

ant of any j?ows in L.

We can prove that the Delay Condition for a flow f

in L is satisfied if the following holds: tf –t$ ~ Af. We

call our scheme Leap Forward Virtual Clock because

the server clock can leap forward when all active flows
are oversubscribed. After the leap forward step, at

least one active flow in L becomes eligible for transfer

to H. Thus the server is work-conserving.

The leap forward step can be implemented by

advancing the server clock to the smallest value of

(tj - Af ) among all active flows ~ that are in L. This

suggests organizing the flows in L as a priority queue

with key tf– Aj (instead of tf as in H). ‘The use

of these offset flow tags allows us to check the Leap

Forward and Transfer conditions only for the flow(s)

at the head of L.

3.1 Transfer Thresholds

The description above can be used to generate a

family of schemes. A particular implementation in-

volves fixing certain parameters. For instance, main-

taining the Delay Condition requires there be l’suffi-

cient time” left for the deadlines of all flows in L. In

our implementation, we ensure that any flow ~ in L

satisfies the following No l?ush condition:

tf– Aj > t,.

Any flow f in violation of the “No Rush” condition

must be transferred to H. Since L is a priority queue

with tf — Af as keys, it suffices to check this condition

for the flow g at the head of L. If g violates the No

Rush condition, we transfer it to H, and repeat the

process on the new flow at the head of L, until we

reach a flow that meets the condition. At this point,

we can be sure that all flows remaining in L satisfy

the condition. While we may have to perform multiple

transfers from L to H, each packet is extracted from

L at most once. Thus, the amortized cost per packet

is at most one Delete operation from L.

Finally, since server clock advances discretely, all

tests use an additional slack parameter ~ = ~-, where

M is the largest packet in the system. To make the

Throughput Condition concrete, we also fix k = 2.

3.2 Allowing Rounded Tags

The Internal Revenue Service allows tax filers to

round numbers to the nearest dollar. The intent is re-

duced computation at the expense of a possible small

loss. We investigate a similar tradeoff between accu-

racy of tags and computational overhead. Let p be an

arbitrary number. We will “round” up tag values to a

whole multiple of p. Implementing the Leap Forward

scheme with exact tags corresponds to setting p = O.

Fix a value of p. The coarsened version of Leap

Forward continues to compute fully accurate tags tf

and t$, but rounds them up to the nearest lmultiple

of p before inserting them into the priority queues H

or L. Since rounding may introduce an error of P

in the relative values of two tags, all our tests, such

as Throughput and Delay Conditions, can be off by

p. We prove that this uncertainty increases the de-
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lay bound by at most p, and worsens the worst-case,.
throughput ~airness index by a small amount.

3.3 Leap Forward Code

Leap Forward Virtual Clock

ProcessHead (Q~)

if (Qf IS enzpty) return;

p - heud(Qf);

t~ f- T(p) i- max(t$, tf) + ~;

if(tf < t,+ A~+~+p) then

Insert(H, p, t~));

else Insert(L, p, tj – Af);

End.

Enqueue (* A new packet

AddToTail (Q~);

if (Qj was empty) then

ProcessHead (Qf);

Dequeue (* The server is

in the system. *)

k ~,. + A4inKey(L);

Pf =ri- *)

idle aad there is a packet

Let j be the flow corresponding to

the key k~,~.

if (H as empty) then

t.= max(t,, k~,~ – p) (* Leap forward *)

while (k~,~ < t, + r + P )

p~ +- EztractMin(L);

Insert(H, pf, T(pt)); (* Transfer *)

k mtn. - MinKey(L);

end

pf +- EztractMin(H);

t,+ts+~. (*Start Service *)

Remo.e f romTail (Q~ )

ProcessHead (Q f);

Transmit pf; (* Real time elapses *)

Figure 3: Leap Forward Virtual Clock: Algo-

rithm

The Leap Forward algorithm asynchronously per-

forms two operations repeatedly: Enqueue and De-

queue. The former handles the task of inserting a

new] y arrived packet in appropriate e data structures,

while the latter deals with prioritizing packets for ser-

vice. The server always picks for transmission the

packet p with the current smallest tag in H. The

server clock is advanced by /(p)/B, and p is deleted

from the flow queue. Only then does the server begin

transmitting the packet p. Real time elapses only dur-

ing packet transmission. All other events are i~sumed
to be instantaneous. The server clock is incremented

before the packet is actually transmitted!

The code for Leap Forward algorithm is described

in Figure 3. The algorithm maintains two priority

queues, H and L, which allow Insertion and .Extract-

Min operations. Each flow f has a FIFO queue Qf

which contains flow f packets that are waiting for ser-

vice. tj maintains the flow tag of f, while 1:$ is the

server clock. Variables t~ and tf, for all f, are ini-

tialized to O, and reset to zero whenever the server

becomes idle,

The procedure Insert(A, p, z) inserts the rounded

value of z (assuming some fixed coarsening parameter

p) into the priority queue d. The value z is the tag of

p if A = H and the offset tag if A = L. In addition,

the procedure ProcessHead is used to handle a packet

p when it reaches the head of its queue Qf.

We show that:

‘3%eorern 3.1 LFVC is a work-conserving service

discipline.

Due to lack of space, we omit the proof. Please refer

to [15] for details.

4 Delay Bounds for LFVC

We establish the delay bound at a single server, and

extend it to multiple hops.

4.1 Delay at a Single Server

We show that LFVC maintains the Backlog In-

equality. Due to our use of rounded tags, we only

require that this Inequality hold for times t that are

whole multiples of the parameter p. The following

lemma collects some useful invariants on flow t age..

Lemma 4.1 (Tag invariant) Consider a flow f,

and its current tag if. LFVC maintains thefollow-

ing invariant with respect to the current server time

b~ .-

Tl: Iftf is in H, then tf ~ t. + Af + T+p.

T2: If tf is in L then tf > t. + Af.

T3: Let /f be the length of packet at the head of f‘s

queue (assume ff = O if f is idle). Then, tf ~

t,+r+p+Af+tf/rf.

Our next lemma proves a weaker version of the

backlog inequality, which we use in establishing our

final lemma. Let us recall the definition of the set @t

from earlier discussion: @t = {f \ tf s t} i:s the set

of flows whose current tags are less than t, for a server

time t > t,.We call a flow backlogged if it currently

has at least one packet in its queue.
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Lemma 4.2 (Sufficient Bandwidth) Ij for all

t z t,, every backlogged j70w f c QJt satzsfies lf ~

(tj – t,)rf, then the backlog inequality holds at t,.

Let us use the notation R(n) to denote the value of

n rounded up to the nearest multiple of p. Abusing the

notation slightly, we also use R(p) to denote R(T(p)).

We are now ready to state and prove the following key

lemma.

Lemma 4.3 (Backlog Lemma) In LFVC, the

Backlog Inequality holds for all rounded values oft.

That w, if t M a whole multzple of p, then the follow-

ing holds:

PROOF. Our proof is by induction on the number of

events, where an event is either an Enqueue, or any

of the following four steps of Dequeue: Leap Forward,

Transfer, Start Service, and End Service. Due to lack

of space, we only discuss the proof for the Enqueue;

the remaining cases are similar and a complete proof

can be found in the technical report [15].

[Enqueue.] Suppose a packet pf arrives at the head

of queue for the flow f. Let tf be the current

tag of ~ before pf arrives. Then, the tag of pf

is given by T(pf ) = tf + ~. We consider two

cases, depending upon whethe’r or not T(pj ) < t.

If T(pf) > t, then f @ @t, and the lemma

clearly holds. If Z’(pj ) < t,then the first term

on the left hand side of the Backlog Inequality

increases by -ff, but the second term decreases by

(t-tf) rf - (t -T(pf)) T-f = (T(pf) -tf) rf =

lf, and the right hand side remains unchanged,

Hence the inequality is preserved.

❑

The preceding lemma implies that at any time t
the server has sufficient bandwidth to service packets

scheduled before t. This allows us to bound the service

time of a packet:

Lemma 4.4 (Service Time) A packet p is com-

pletely transmitted by the time the server clock reaches

R(p) s T(p) + p. Thus, no packet in H or L has a

tag smaller than t.– p.

The preceding lemma bounds a packet’s service

time in terms of the virtual server clock. But we need

a statement in terms of real time. Our next lemma

establishes a connection between the server clock and

real time. Let 1 be a variable that maintains the value

of the real time when the server was last idle. If the

server is currently busy, then 1 equals the real time

when the last busy period began. If the server is idle,

then 1 equals the current value of real time. Simi-

larly, let L be a variable that maintains the amount

of leap-forward done in the current busy period up to

the current instant of time. At the start of a busy pe-

riod, we set L = O. The following lemma shows that

real time equals server time plus 1 – L, except during

packet transmission, when it can be behind by T.

Lemma 4.5 (Server Clock Deviation) Let t be

real time and let I and L be defined as above. Then,

the following holds:

1. During a packet transmission, t ~ (t,+ I– L) ~

t+r.

2. At all other times, t = (t, + I – L).

The preceding two lemmas imply that a packet p

is serviced in the Leap Forward system no later than

the real time value R(p) + 1 – L. We use this fact to

prove end-to-end delay bounds.

We then show that our scheme is a Guaranteed

Rate scheduling algorithm, as defined by Goyal et

al. [8]. This provides an end-to-end delay bound from

our single-server delay bound; we omit detabils, and

state the result.

Theorem 4.6 (End-to-end Delay Bound)

Suppose that a jlow f conforms to a leaky bucket pro-

cess with parameters (uf, rf ), and the scheduling al-

gorithm at each of the K servers on its path is LFVG’.

Then, the end-to-end delay of a packet p?, denoted by

d?, is given by the following:

@

d~ ~ ~ + (K-l) m%x~
f + f~’”jrl r

i=l

Leap Forward has /3 = p + r. If we eliminate tag

coarsening (set p = O), our result is identical to the

standard delay bound of classical virtual clock and

WFQ. Tag coarsening adds an additional delay of at

most p per server on the path. The parameter p can

be used to derive tradeoffs between additional delay

and savings in computational overhead.

Goyal et al. [8] also show how to obtain probabilis-

tic bounds on the end-to-end delay when the bursti-

ness of a flow is bounded with a stochastic process,

such as the exponentially bounded burst ine:w. The

same results also apply to our scheduling algorithms.

In next section, we address the throughput fairness of

our algorithm.
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5 Throughput Fairness of Leap For-

ward

Informally, a scheme is fair if each backlogged flow

receives its fair share of the available server band-

width. There are two commonly used fairness mea-

sures: the first, proposed by Golestani [9], is a gross

measure, while the second, introduced recently by

Bennett and Zhang [1], is a more refined measure.

Bennett-Zhang call their measure worst-case fairness

index (WFI), and show that while WFQ is fair by

Golestani’s measure, it falls short of the ideal GPS by

the worst-case fairness index. WFI more closely mea-

sures short-term bursty behavior. We will show that

our Leap Forward Scheme satisfies both Golestani’s as

well as Bennett-Zhang’s definition of fairness.

5.1 Fairness Measure of Golestani

A flow is said to be backlogged during interval

(tl, tz) if the queue for flow ~ is never empty dur-

ing (tl, t2). Let sent~ (tl, t2) denote the total num-

ber of bits of ~ transmitted during (tl, t2) by the

server. Throughput fairness of an algorithm is mea-

sured by the maximum (absolute) difference between

rate-normalized values of sentf (tl, t2) and sentj (tl, t2)

over all pairs of backlogged flows and over all intervals

(tl, tz). In other words, consider an execution of the

Leap Forward algorithm, and define F’(tl, t2) as fol-

lows:

where max is over all pairs of flows that are backlogged

during (t ~, i2). Then, throughput fairness is measured

by the worst-case maximum value of I’(il, t2)over all

intervals and all executions of the algorithm:

F = ~~;j F(tl, t2).

We call a service discipline fair if F is a small con-

stant. In particular, F should be a constant, indepen-

dent of the length of the time interval [9]. It is known

that in the case of the classical virtual clock, F + co.

For LFVC, we prove:

Theorem 5.1 (Throughput Fairness)

The fairness measure of LFVC Clock satisfies: F <

maxf,g 3(Af + Ag) + 27-+ 4P, where ~ = M/B and P

is a tag coarsening parameter.

5.2 Worst Case Fairness Index

The following measure of throughput fairness, due

to Bennett and Zhang [2] provides a more refined mea-

sure of short term throughput unfairness than the

Golestani measure. We start with some notation.

The delay D(p) of a packet p is the real time that

elapses between the arrival time of p and the time p is

completely transmitted. The arrival time of a packet

p is denoted by A(p). Assume p belongs to flow ~. Let

Q(P) denote the size (in bits) of the queue in front of

p (including p) at the time of p’s arrival.

Definition 5.2 A seruice discipline is said to be

worst-case for flow f if, for any packet p in f, the fol-

lowing holds: D(p) < ~ + Cl, where C’f is a con-

stant independent of other flows sharing this server.

The normalized worst-case fair index (WFI) is defined

L&as C = maxf .

Bennett and Zhang [1] have shown that Worst-case

Weighted Fair Queuing has an optimal WFI equal to

r = IW/B. We show that the WFI of our scheme is

nearly the same. Our proof depends critically on two

facts: one, the current tag of a backlogged flow differs

from the server clock by no more than 2Af + ~ + p

(Lemma 4.1), and, two, during a backlogged period

(tl, t2), the difference of the initial and final tags of f

is (roughly) the number of bits of flow f transmitted

during (tl,t2)divided by its rate rf.

Theorem 5.3 The Worst- Case Fairness Index of

Leap Forward Virtual Clock is bounded by T +-

maxf 2(7+p) ~.

In practice, rf /B should be quite small, and if we

set the coarsening parameter p to roughly r, the WFI

of Leap Forward approaches ~, which is the optimal

value of WFI [1].

6 Data Structures

The only nontrivial data structure needed for im-

plementing LFVC is a priorit y queue. Using standard

data structures for maintaining priority queues, we

can implement LFVC in O(log IV) time per packet.

We can improve the processing cost to O (log log N)

per packet using two key ideas: tag coarseniI~g and a

finite-universe priority queue.

The basic idea of tag coarsening is that maintain-

ing exact order among virtual clock tags is overkill

if one is willing to tolerate a minor increase in la-

tency. For instance, suppose the server rate is B

and the largest packet size in any flow is M. Then,

rounding up all the tags to multiples of M/B dramat-

ically reduces the underlying key space of the priority

queue, while increasing the delay by at most M/B.

We further reduce the key space to a set of O(N) in-

tegers, in the range [1, CAT] for a fixed constant c,

by using a tag-separation property of our algorithm

and modular arithmetic to recycle tags. With these
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ideas in place, we use “approximate sorting” and a

finite-universe priority queue of van Erode Boas [6] to

achieve O(log log N) processing time per packet. De-

tails can be found in [15].

The following theorem summarizes the main result

of our paper.

Theorem 6.1 LFVC provides a guaranteed delay

bound comparable to WFQ, throughput fairness com-

parable to worst-case WFQ, and can be implemented

wzth the worst-case overhead of O(log log N) per

packet, where N is the number of active flows.

6.1 Preliminary Implemental ions

We have implemented the O (lg lg N) priority queue.

The constants are roughly 250 Spare instructions per

operation. We have found that a second scheme based

on tries, outperforms the (unoptimized) Van Erode

Boas structure for small values of’ N. The trie scheme

views a K bit tag b bits at a time, and goes through a

tree of arrays b bits at a time. If b is small we can avoid

searching through empty array elements by keeping

a bitmap and doing a table lookup to determine the

lowest non-null array position. A trie-based imple-

ment ation for values in the range [0..221 — 1] requires

worst-case 85 Spare instructions for Insert and 183 in-

structions for ExtractMin. Note that for both the trie

scheme and the Van Erode Boas scheme, reducing the

size of the tag by coarsening is crucial for decreasing

processing costs. We hope that further optimization

will reduce the cost to around 40 instructions for val-

ues of N < 10000.

7 Simulations

We used a stripped down version of the network

simulator, freely available from Lawrence Berkeley

Laboratories,2 to carry out simulations. We imple-

mented several fair-queuing algorithms and compared

their performance to Leap Forward Virtual Clock

scheme. The simulator allows us to examine packets

that go through a link, and calculate delays of individ-

ual packets and overall bandwidth seen by each flow.

Due to space constraints, we show only one of the

simulation results in Table 7 where we compare the

delay experienced by difiereut flows under four cliffer-

ent fair queuing schemes. Average delay experienced

by flows under LFVC are similar to those under VC

and much smaller than those under DRR and SCFQ.

Other results [15] illustrate the merits of LFVC over

other fair queuing schemes.

2http://rnw-nrg. ee.lbl.gov/ns/

3The rate allocations in this experiment are borrowed from

[13]; but the flows here send data at a constant bit rate as

opposed to an on-off model used in their experiments.

Based on our experiments, we observe: 1) LFVC

rations the output link fairly among contending flows.

The leap forward step prevents credit accumulation.

2) Flows sending packets at or under their :reserved

rate experience very small delay in LFVC but the de-

lay suffered by ill-behaved flows (on average) appears

to be worse in Leap Forward. 3) LFVC does not cause

bursty behavior as can be exhibited by both SCFQ and

WFQ.

8 Concluding Remarks

We believe there are several important contribu-

tions of this paper. The first contribution is the al-

gorithm itself. Leap Forward Virtual Clock g,oes well

beyond Virtual Clock by adding two non-trivial modi-

fications: a quarantine mechanism and a leap forward

mechanism. The result ing scheme provides through-

put fairness, even in a worst-case sense, wit bout com-

promising delay bounds. The algorithm is elegant and

simple to implement, and should have practical ap-

peal.

Second, our analytical techniques (i.e., separation

of delay and throughput conditions) are new and sim-

ple. They may be useful for other schemes as well

(WFQ, SCFQ etc.)

Third, the idea of trading off delay bounds for re-

duced computation, leads to an exponential speedup

for our algorithm. The same ideas may well be appli-

cable to other fair queuing schemes but requires care-

ful proofs. We found a number of subtle bugs before

we were able to make coarsening work for LFVC with-

out compromising throughput fairness.

The scalabilzt y offered by O (log log N) schemes

holds promise as networks become larger and operate

at increasingly higher speeds. Our preliminary imple-

mentation shows that the underlying constant is rea-

sonably small (insert, delete, and successor/’findmin

operations cost between 200 and 300 Spare instruc-

tions). We believe that with further optimiziztion we

can rival more conventional schemes (such as tries),

for even small values of N.

Future work includes using LFVC in Hierarchical

Fair Queuing systems and extending the scheme to

provide jitter bounds. We also plan to implement

LFVC in a real router testbed.
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