4.3.3. Знак Ь • с и перпендикулярность Напомним, что соэ(9) положителен, если |б| меньше 90°, равен нулю при |8| = 90° и отрицателен, если |9| превышает 90°. В силу того, что скалярное произведение двух векторов пропорционально косинусу угла между ними, мы можем сразу определить, что угол между двумя векторами (любой длины, отличной от нуля) составляет: менее 90°, если Ь • с > 0; ровно 90°, если Ь • с = 0; (4.16) более 90°, если Ь • с < 0.

Все эти результаты приведены на рис. 4.10. Знак скалярного произведения используется во многих алгоритмических тестах.

Рис. 4.10. Знак скалярного произведения Особенно важным является случай, когда векторы расположены под углом 90°, то есть перпендикулярны. Определение. Векторы b и с называются перпендикулярными, если ь-с = 0. (4.17)

Иногда вместо слова «перпендикулярны» употребляют синонимы: ортогональны (orthogonal) и нормальны (normal), и мы будем пользоваться всеми этими тремя словами попеременно. Вектор, перпендикулярный прямой или плоскости, также иногда будем называть нормалью.

Наиболее известными примерами ортогональных векторов являются те, которые расположены вдоль осей дву- и трехмерных систем координат, как показано на рис. 4.11. На рис. 4.11, а двумерные векторы (1,0) и (0,1) являются взаимно перпендикулярными единичными векторами. Трехмерные аналоги этих векторов употребляются столь часто, что их называют «стандартными единичными векторами» (координатными ортами) и обозначают буквами i, j, k.

Определение. Координатными ортами в трехмерном случае называются векторы, имеющие следующие компоненты:

і = (1,0,0), j - (0,1, 0), к - (0,0,1). (4.18)

На рис. 4.11, б показаны эти три орта в правосторонней системе координат, а на рис. 4.11, в - в левосторонней системе. Отметим, что к всегда указывает на положительное направление оси z.

С помощью приведенных определений можно записать любой трехмерный вектор (а, Ь, с) в альтернативной форме:

(а, Ь, с) = йі + b'i + ск. (4.19)

Френсис Хилл

Глава 4. Векторные инструменты для графики


⇐ Предыдущая| |Следующая ⇒