Одним из основных факторов, оказывающих влияние на существование описанных выше трех классов систем сигнализации, является обусловленность взаимосвязью систем сигнализации, поддерживаемых той или иной АТС, с используемым в этой АТС принципом управления обслуживания вызовов.

Так исторически сложившиеся системы сигнализации первого класса очевидным образом ассоциируются с аналоговыми декадно-шаговыми станциями, реализующими принципы непосредственного управления. Эти станции состоят из отдельных ступеней искания, каждая из которых имеет свой собственный механизм управления и совмещает тем самым функции управления и коммутации. Упрощенное представление межстанционной сигнализации первого класса показано на рисунке 1.3. Для этих станций в процессе обслуживания вызова линейные и разговорные сигналы проходят один и тот же путь внутри станции, и они также проходят одинаковый путь вне станции по межстанционным соединительным линиям.

Упрощенное представление способов сигнализации непосредственно по телефонному каналу

Рис. 1.3. Упрощенное представление способов сигнализации непосредственно по телефонному каналу

Передача сигналов по телефонным каналам (физическим цепям) постоянным током может осуществляться гальваническим, шлейфным или батарейным способом.

При батарейном способе сигналы передаются по проводам а, Ь или с с использованием станционных батарей АТС и земли в качестве обратного провода. Более подробно этот способ рассмотрен в главе 4.

При шлейфном способе в отличие от батарейного сигналы передаются в шлейфе без использования земли в качестве обратного провода, т.е. от станционной батареи одной станции. В этом случае возможная разность потенциалов заземлений на передачу сигналов не оказывает влияния. Состояния шлейфа постоянного тока в разговорной цепи обозначают передаваемую информацию. Использование шлейфной сигнализации на межстанционных соединительных линиях ограничено возможной дальностью передачи сигналов постоянным током, необходимостью «обхода» усилителей, не пропускающих импульсы постоянного тока, а также невозможностью работы по каналам систем передачи с частотным разделением каналов (ЧРК). Тем не менее, эти способы нашли применение на городских и сельских телефонных сетях.

Гальванический способ (рис. 1.4) характеризуется тем, что цепи передачи сигналов даже при наличии на линии трансформаторов имеют гальваническую связь. Данный способ передачи сигнализации нашел применение на сельских телефонных сетях при связи сельских АТС с ручными телефонными станциями системы ЦБ, а также для ручных станций системы МБ при связи с АТС, когда станции МБ не оборудованы источниками электропитания напряжением 24 В. Недостатком способа является то, что сигналы управления проходят по обоим проводам линии в одном направлении и поэтому оказывают значительное индуктивное влияние на соседние цепи.

Передача сигналов гальваническим способом

Рис. 1.4. Передача сигналов гальваническим способом На сельских телефонных сетях нашел применение индуктивный способ передачи сигналов для связи центральной станции с узловыми и оконечными АТС, а также для связи узловой станции с оконечными по физическим двухпроводным соединительным линиям. В качестве приемника индуктивных импульсов используется поляризованное \ еле. Положительной стороной индуктивного способа является возможность образования "искусственных (фантомных) цепей, что для сельских телефонных сетейЛ$ отдельных случаях могло иметь определенное значение. - Сегодняшнее состояние местных телефонных сетей Российской Федерации позволяет автору не рассматривать более подробно шлейфный, гальванический и индуктивный способы сигнализации по физическим линиям. Последний способ будет все же упомянут в главе 7 для объяснения сигнализации по одному выделенному сигнальному каналу (1ВСК) индуктивным кодом. Что же касается батарейного способа сигнализации по трехпроводным соединительным линиям, то ему посвящена целиком глава 4 книги, что обусловлено все еще значительным использованием этой сигнализации на местных телефонных сетях Российской Федерации.

Следующий этап развития коммутационных станций показан на рисунке 1.5. Здесь уже отдельные ступени искания шаговых станций заменяются коммутационными блоками, а для установления соединений и разъединений вводятся специальные управляющие устройства (регистры и маркеры), отделенные от коммутационных приборов. Такая технология позволяет добиться большей гибкости в управлении вызовами и является более экономичной.

Система сигнализации второго класса - сигнализация по выделенному сигнальному каналу (ВСК) - обычно ассоциируется с этим классом станций. Сигнальная информация проходит по тому же пути, что и соответствующий разговор, но они разделены внутри станции. Это представлено на рисунке 1.5, где разговорные телефонные цепи (обозначенные сплошными линиями) организуются коммутационным блоком, а сигнальная информация (обозначенная пунктирными линиями) передается и принимается управляющими устройствами станции.

Упрощенное представление сигнализации по выделенному сигнальному каналу (ВСК) с раздельными блоками коммутации и управления

Рис. 1.5. Упрощенное представление сигнализации по выделенному сигнальному каналу (ВСК) с раздельными блоками коммутации и управления Появление этого поколения коммутационных станций вызвало также более активное использование различных способов сигнализации переменным током. Все они базируются на сигнала» различной частоты: либо в той же полосе частот, что и разговорные сигналы (от 300 до 3400 Гц), либо в более низкой (менее 300 Гц), либо в более высокой (более 3400 Гц) полосе частот. На рисунке 1.6 показано это распределение полос частот.

Распределение внутри- и внеполосной сигнализации токами тональных частот

Рис. 1.6. Распределение внутри- и внеполосной сигнализации токами тональных частот

Внутриполосная сигнализация предусматривает передачу сигнальной информации по тому разговорному каналу, к которому эта информация относится. Передача сигнальной информации достигается генерацией одного или нескольких тональных сигналов и передачей их по соответствующему разговорному каналу. На другом конце содержание информации анализируется с помощью тонального приемника.

В межстанционных трактах передачи эти сигналы обрабатываются точно так же, как обычная речь - для обработки сигнала используются усилители разговорного тракта, что приводит к гораздо большей дальности использования сигнализации, чем это возможно в системах сигнализации с постоянным током.

Системы внутриполосной частотной сигнализации могут использоваться как для линейной, так и для регистровой сигнализации, причем для регистровой сигнализации более эффективно применение специальной разновидности сигнализации токами тональной частоты - так называемых многочастотных систем сигнализации, рассмотренных в данном разделе несколько позже и описанных в их специфических российских вариантах в главе 6.

Линейная сигнализация токами тональных частот может осуществляться передачей одночастотных или двухчастотных сигнальных посылок. Значение сигнала определяется направлением сигнала, частотой сигнала и соответствующим этапом в процессе установления соединения, в "котором этот сигнал послан. Для линейной сигнализации чаще применяются непрерывные неконтролируемые протоколы сигнализации, для которых факт передачи сигнала обозначается включением/выключением. тональной частоты. Отсутствие взаимного контроля означает, что подтверждение приема сигнала не требуется для прекращения его посылки. Примером такого типа сигнализации может служить система Ве11 ББ (табл. 1.2).

Таблица 1.2. Пример непрерывно неконтролируемой системы сигнализации (система Ве11 ББ)

Сигнал

Прямой сигнал

Обратный сигнал

Исходное состояние

Включен

Включен

Занятие

Выключен

Включен

Ответ

Выключен

Выключен

Разъединение

Включен

Произвольный

В импульсных внутриполосных системах сигнализации информация передается тактированными импульсами тонального сигнала. Значение сигнала определяется направлением, длиной импульса и этапом последовательности соединения, в котором передается сигнал. Достоинство импульсного вида внутриполосной сигнализации состоит в том, что возможен больший набор сигналов (позволяющий передать больше параметров), возможны более высокие уровни сигналов (благодаря ограниченной длительности сигналов) и их меньшее влияние друг на друга (опять-таки вследствие их ограниченной длительности). Однако необходимость эффективного распознавания сигналов приводит к тому, что оконечные комплекты сигнализации относительно сложны и дорогостоящи. Типичными примерами импульсных внутриполосных систем сигнализации могут служить российская одночастотная система сигнализации 2600 Гц, детально рассмотренная в главе 5, или английская система сигнализации АС9, представленная в таблице 1.3.

Таблица 1.3. Примеры сигналов в импульсной внутриполосной системе сигнализации (система ЦК АС9)

Сигнал

Тональный импульс (частота 2280 Гц), мс

Занятие

70

Цифры

60

Ответ

250

Разъединение

Более 700

Внутриполосные системы сигнализации могут применяться двумя методами: от звена к звену и из конца в конец. При методе сигнализации от звена к звену вся адресная информация обрабатывается в каждой станции. Согласно примеру на рис.1.7, сначала сигналы поступают от АТС А к АТС Б, после чего передатчик АТС А освобождается. Затем АТС Б посылает всю информацию на АТС В, причем каждая станция обрабатывает адресную информацию перед тем, как послать ее к следующей станции.

Для метода сигнализации из конца в конец сигналы между исходящей и входящей АТС передаются прямо по разговорному тракту, без преобразования и/или анализа их в промежуточных коммутационных узлах. Поэтому при сигнализации из конца в конец сигналы (например, сигнал ответа) могут передаваться достаточно быстро. Как показано на рис. 1.8, регистр станции вызывающего абонента (Per) задействуется на все время установления соединения, а маркер станции вызывающего абонента (М) посылает на следующую станцию только информацию, необходимую для маршрутизации вызова. Затем АТС А посылает информацию на АТС В, а регистр на АТС Б освобождается сразу же после завершения маршрутизации от АТС Б к АТС В.

Внеполосные системы сигнализации используются в системах передачи с частотным разделением каналов (ЧРК). В таких системах каждый разговорный канал, обычно размещается в частотном спектре 4 кГц, но для передачи речи используется только диапазон 300-3400 кГц, а для сигнализации - оставшаяся часть частотного спектра 3400-4000 Гц (рекомендуется 3825 Гц). Преимущества внеполосной сигнализации включают возможность передачи сигнала одновременно с передачей речи и ненужность мер для преодоления имитации сигналов обычной речью. Недостаток внеполосной сигнализации в том, что она может применяться только в системах передачи, которые допускают более широкий частотный спектр, чем обычные немультиплексированные системы передачи. В результате она обычно ограничивается только системами передачи с частотным разделением каналов.

Сигнализация по методу от звена к звенуог станции А к станции Б и от станции Б к станции В

Рис. 1.7. Сигнализация по методу от звена к звенуог станции А к станции Б и от станции Б к станции В

Природа внеполосной сигнализации предоставляет возможность ее использования в многочисленных режимах, включая непрерывный режим и импульсный режим, которые описаны выше для тональной частотной сигнализации. Обычные применения - это непрерывный, не взаимно контролируемый режим в двух модификациях: использующий для свободного состояния включенный тональный сигнал или использующий для свободного состояния выключенный тональный сигнал.

Рис. 1.8.

Природа внеполосной сигнализации предоставляет возможность ее использования в многочисленных режимах, включая непрерывный режим и импульсный режим, которые описаны выше для тональной частотной сигнализации. Обычные применения - это непрерывный, не взаимно контролируемый режим в двух модификациях: использующий для свободного состояния включенный тональный сигнал или использующий для свободного состояния выключенный тональный сигнал.

Примером первой модификации с включением тонального сигнала для свободного состояния является линейная сигнализация R2, рассмотренная в главе 9 данной книги. Примером применения второй модификаций с отключением тонального сигнала в свободном состоянии является английская система сигнализации АС8, сигналы которой представлены в таблице 1.4.

Таблица 1.4. Примеры сигналов в системе с передачей свободного состояния отключением тонального сигнала

(система UK ACS)

Сигнал

Тональный сигнал в прямом направлении

Тональный сигнал в обратном направлении

Исходное состояние

Выключен

Выключен

Занятие

Включен

Выключен

Импульс набора

Включен

Выключен

Ответ

Включен

Включен

Разъединение

Выключен

-

Системы сигнализации первых двух классов, представленные на рис. 1.3 и рис. 1.5, обладают ограниченными возможностями передачи сигнализации, в частности, ограниченным объемом сигнальной информации (например, ограниченное число состояний шлейфа постоянного тока или ограниченное число комбинаций частот) и ограниченными возможностями передачи (например, невозможно передать сигналы на частоте разговорного спектра на стадии разговора, ,не вызывая неудобств у абонентов или без принятия специальных мер).

Еще одним ограничением, проявившимся по мере развития международной сети связи, было «урезание разговора». Как уже отмечалось выше, для ряда протоколов сигнализации необходимо отделить разговорный тракт во время установления соединения для того, чтобы избежать прослушивания тональных сигналов вызывающим абонентом. Это приводит к задержкам в передаче сигнала «Ответ», и если вызываемый абонент начинает говорить сразу после ответа, то начало его фразы теряется.

Все это послужило историческими предпосылками к созданию третьего, упомянутого в начале параграфа класса способов сигнализации - общеканальной сигнализации, философия которой заключается в отделении тракта сигнализации от разговорного тракта (рис. 1.9).

Упрощенное представление общеканальной сигнализации

Рис. 1 .9. Упрощенное представление общеканальной сигнализации В дополнение к снятию указанных ограничений имелись еще факторы, обусловившие принятие ОКС для национальных и международных сетей связи: быстро развивающиеся методы программного управления узлами коммутации; эволюционный потенциал, заложенный в концепцию системы ОКС, для оперативного добавления новых возможностей в соответствии с новыми требованиями сети. Система ОКС была разработана не только для удовлетворения сиюминутных потребностей тогдашней телефонной сети. Она обладает значительной гибкостью с точки зрения удовлетворения требований, которые возникли позже и могут возникнуть в будущем.

Скептически настроенному читателю, которого до конца не убедили эти рассуждения, автор рекомендует сопоставить материал главы 10 с описаниями протоколов сигнализации в главах 3-9 данной книги.

_1.4. СПЕЦИФИЧЕСКИЕ ОСОБЕННОСТИ РОССИЙСКИХ СИСТЕМ СИГНАЛИЗАЦИИ_

В начале своей работы МККТТ сосредотачивался на спецификациях международных систем сигнализации, допуская развитие национальных систем сигнализации независимо друг от друга. В наибольшей степени это отразилось на истории построения телефонной сети на 1/6 территории земного шара, что отчасти связано с отсутствием в Советском Союзе особого стремления к соблюдению международных стандартов, по крайней мере, в области телекоммуникаций. Сегодняшним проявлением этого являются специфические межстанционные протоколы сигнализации и процедуры обслуживания вызовов на телефонной сети Российской Федерации, которые вызывают значительные затруднения при внедрении цифровых АТС, при построении сети интегрального обслуживания КЭК, при реализации концепции интеллектуальной сети Ш и т.д.

Существующие специфические протоколы сигнализации российских телефонных сетей разработаны с учетом требований координатных и декадно-шаговых АТС и, в основном, сводятся к описанному выше методу сигнализации из конца в конец, который весьма удобен в условиях аналоговой сети, обеспечивающей соединение между абонентами по физическим цепям. Совсем не так обстоит дело в случае цифровых АТС. Здесь метод сигнализации от звена к звену представляется более предпочтительным. Это иногда приводит к парадоксальным ситуациям, состоящим в том, что ранее эксплуатируемые электромеханические АТС могли обеспечивать более высокое качество обслуживания вызовов, нежели заменяющие их цифровые АТС. Причина в том, что существующие протоколы часто не позволяют использовать все преимущества современной технологии, хотя они были весьма удобны для сетей связи электромеханическими АТС. Тем не менее, необходимость поддержки этих протоколов будет являться обязательным требованием к новым цифровым АТС, внедряемым на российских телефонных сетях в ближайшие десятилетия. Далее в главах 3-7 книги сделана попытка объяснить, что такое протоколы сигнализации российских телефонных сетей, как они функционируют, как они могут быть проверены, какова их внутренняя логика и т.п. Здесь же рассмотрены только некоторые наиболее общие факторы.

Одним из таких факторов является наличие двух видов соединительных линий (СЛ) для коммутационных узлов и станций ГТС: местные СЛ и входящие междугородные СЛ, что обусловлено различием в обработке местных и междугородных входящих вызовов и приводит к организации различных пучков соединительных линий на ГТС. Полезно вспомнить в связи с этим рис. 1.2 данной главы, на котором была показана городская телефонная сеть (ГТС) крупного города с семизначной нумерацией и возможностью включения до 8 миллионов абонентских линий (с учетом резервирования цифр «8» и «О» в качестве индекса выхода на междугородную АТС и на узел спецслужб, соответственно). На сельских сетях емкость пучков линий относительно невелика, они более дорогостоящие, их использование гораздо ниже, поэтому чаще используются общие пучки соединительных линий, а различные функции обслуживания вызовов обеспечиваются посредством соответствующих протоколов сигнализации.

Другим существенным фактором при рассмотрении систем сигнализации является сохраняемая до настоящего времени практически на всех местных сетях оплата только междугородных вызовов (вызовов, поступающих через междугородную станцию), а также приоритет в обслуживании междугородных вызовов. Для реализации системы тарификации, существующей сегодня на Взаимоувязанной сети связи Российской Федерации, информация о категории и номере вызывающего абонента должна передаваться на междугородную АТС, которая, в свою очередь, обеспечивает возможность осуществления определения номера вызывающего абонента (АОН) дистанционно в отношении любого абонента местной сети. Принятое для этого техническое решение ориентировано на сети с электромеханическими АТС и обсуждается в главе 8. Более того, обработка входящего междугородного вызова оконечной АТС отличается от обработки местного вызова и соответствует специальному протоколу сигнализации. В частности, входящая местная АТС должна определять состояние вызываемого абонента и передавать эту информацию на междугородную станцию, Классификация систем линейной сигнализации, распространенных на сельских и городских телефонных сетях, представлена в таблицах 1.5 и 1.6, содержащих перечни наиболее часто встречающихся физических стыков между АТС в первой из упомянутых таблиц, наиболее распространенных протоколов сигнализации во второй таблице. Такое разделение физического и логического описаний систем сигнализации применяется автором во всех главах.

В качестве основного физического интерфейса городских телефонных сетей используется цифровой стык со скоростью передачи 2.048 Мбит/с в соответствии с рекомендациями МККТТ 0.703, 0.711, называемый Е1, а основной системой сигнализации являются два выделенных сигнальных канала в 16-ом временном канале и с разделенными пучками исходящих, входящих и входящих междугородных соединительных линий. На сельских сетях также более предпочтителен стык ИКМ со скоростью 2.048 Мбит/с, но этот стык используется для универсальных соединительных линий двустороннего действия, а потому применяется другой протокол. На сельских телефонных сетях также могут быть использованы другие виды аппаратуры передачи ИКМ-] 5 (1.024 Мбит/с) и даже ИКМ-12. Использование на сетях ИКМ-12 активно сокращается, но аппаратура ИКМ-15 до сих пор широко распространена, хотя и не согласуется ни с одним международным стандартом.

Следует подчеркнуть, что все эти системы являются сугубо специфическими и практически не совместимы с международными стандартами. Это не распространяется на рассмотренную в главе 10 систему сигнализации по общему каналу ОКС7, уже активно используемую на российских телефонных сетях. Национальные, технические особенности имеют относительно незначительное влияние на реализацию ОКС7. Это обеспечивает внедрение новых цифровых станций в российскую Взаимоувязанную цифровую сеть связи без тех затруднений, которые вызывают приведенные в главах 3-8 протоколы сигнализации.

Таблица 1.5. Некоторые интерфейсы систем сигнализации (физический уровень)

Тип

Применение

Рассмотрен

Примечание

2.048 Мбит/с ИКМ

Везде

Гл.3

ГШ-Т 0.711, 0.703

1.024 Мбит/с ИКМ

Сельские сети

Гл.7

Специфический

3/4-проводныс СЛ

Везде

Гл.4

Специфический

2-проводныс индуктивные

Сельские сети

Гл.7

Специфический

4/6-проводные СЛ

Везде

Гл. 3, 5

Специфический Е&М

Таблица 1.6. Некоторые протоколы систем сигнализации

Тип Применение Рассмотрен Примечание

ЛИНЕЙНАЯ СИГНАЛИЗАЦИЯ

2ВСК для раздельных пучков

Городские хти

Гл. 3

Различные протоколы для входящих, исходящих и входящих междугородных СЛ

2ВСК для универсальных двусторонних СЛ

Сельские сети

Гл. 3

Единый протокол для всех СЛ

1ВСК "норка"

Сельские сети

Гл. 7

Различные протоколы для входящих, исходящих и входящих междугородных СЛ

Классификация протоколов сигнализации | Сигнализация в сетях связи | Вск