На практике часто требуется осуществить одновременную передачу информации от многих источников по одному каналу ко многим получателям, т. е. осуществить многоканальную передачу. Следует сказать, что современные системы передачи информации практически всегда многоканальные [29].

Способ объединения отдельных сообщений в один групповой сигнал с последующим разделением сообщений на индивидуальные называется уплотнением или мультиплексированием. К классическим методам уплотнения относятся частотное, временное и кодовое.

Современная техника связи позволяет организовывать широкополосные каналы, поэтому целесообразно использовать методы, позволяющие передавать наибольшее число телеграфных, телефонных, телевизионных и других сообщений на одной несущей или в отведенном интервале частот.

Сущность методов мультиплексирования состоит в том, что сообщения от нескольких источников определенным образом комбинируются в групповой сигнал и принимаются с помощью одного приемопередатчика. Поскольку современная система связи обычно является многоканальной, необходимой частью любой системы передачи информации служит мультиплексор (рис. 6.14).

Рис. 6.14. Схема цифровой системы связи

' Наиболее известным является способ частотного мультиплексирования, когда в полосе пропускания канала размещается множество каналов, разделенных с помощью фильтрации по частоте (рис. 6.15, а). Каждый частотный канал представлен своим спектром. Его временная структура может быть различной - это может быть последовательность импульсов или телефонное сообщение. Соответствующая настройка разделительных фильтров приемника позволяет разделить принимаемый групповой сигнал на отдельные сигналы.

При временном мультиплексировании в условном временном интервале размещают последовательно отрезки сообщений, например кодовые последовательности каждого частного канала (рис. 6.15, 6). Если при частотном мультиплексировании сообщения от разных абонентов передаются одновременно по общему каналу, при временном мультиплексировании передача осуществляется строго по очереди, т. е. полоса пропускания канала предоставляется полностью на определенный интервал времени каждому абоненту. На практике обычно группы каналов объединяются в супергруппы, и при каждом иерархическом объединении может применяться разный способ модуляции несущей.

Аналоговый сигнал, например, в телефонном канале преобразуется в цифровой с помощью импульсно-кодовой модуляции (ИКМ) и передается в каналах с временным мультиплексированием. Передача организуется так: выборки каждого непрерывного сигнала сдвигаются на интервал, достаточный для передачи соответствующей кодовой комбинации. При передаче п непрерывных сигналов в стандартном интервале времени размещают п кодовых комбинаций, по одной на каждую выборку каждого сигнала. При этом полоса частот группового сигнала увеличивается примерно в п раз. Например, 24-канальная система для передачи речи работает со скоростью 1544 Кбит/ с (скорость одного канала 64 Кбит/с).

Рис. 6.15. Диаграмма частотного (а) и временного (б) уплотнения каналов Международный консультативный комитет по телефонии и телеграфии разработал стандарты образования многоканальных сообщений при временном мультиплексировании. Прежде всего были предложены 8-разрядный равномерный код для указания значений уровней квантования сигнала и закон квантования, названный "А=87,6". Для проведения выборок, изображенных на рис. 6.12, был использован линейный закон квантования, когда интервалы квантования одинаковы. Закон квантования А=87,6 является нелинейным, он лучше учитывает природу восприятия человеком речевых сигналов. Частота дискретизации телефонного сообщения принята равной 8 кГц. При этом скорость передачи одного телефонного сообщения оказывается равной 64 Кбит/с.

Так как принципиальной основой многоканальной цифровой системы передачи информации является временная шкала, определяющая расстановку информационных и служебных сигналов, соединение цифровых систем различной емкости в единую сеть возможно лишь при условии кратного соответствия временных шкал различных систем и стандартизации групповых сигналов и способов синхронизации. С этой целью разрабатывается иерархия (соподчиненность) цифровых систем.

Подуровнем цифровой системы понимается число каналов или скорость передачи. Иерархия предусматривает возможность образования цифровыми системами низшего порядка системы более высокого порядка. На одном уровне объединяется фиксированное число цифровых сигналов системы более низкого уровня для образования суммарного цифрового сигнала более высокого уровня.

Например, первый уровень соответствует многоканальной передаче 30 телефонных сообщений в цифровой форме. Для этого требуется суммарная скорость передачи 2048 Кбит/с. Второй уровень образован из четырех систем первого уровня с учетом необходимой служебной информации. Он имеет суммарную скорость 8448 Кбит/с. Система второго уровня способна передавать 120 телефонных каналов или один видеотелефонный. Третий и четвертый уровни по рекомендации МККТТ соответствуют скоростям 34,368 и 139,264 Мбит/с.

Некоторые фирмы или страны работают по своим стандартам. В табл. 6.2 приведены сведения об иерархии уровней цифровых систем (скоростей передачи).

Иерархия скоростей цифровых систем является важной эксплуатационной характеристикой. Она предусматривает адаптивность систем к любым цифровым каналам (от обычных телефонных до волоконно-оптических) и всем информационным сигналам (от речевых до сигналов цветного телевидения).

Таблица 6.2

Уровень иерархии цифровых систем

Скорость передачи (Мбит/с)/число каналов

МККТТ

США, Канада

Япония

Первый

2,048/30

1,544/24

1,544/24

Второй

8,448/120

6,312/96

6,312/96

Третий

34,368/480

44,736/672

32,064/480

Четвертый

139.264/1920

274.176/4032

97.728/1440

Пятый

565,148/7680

397,2/5760

В последнее время международным стандартом становится протокол ВУК (высокоуровневое управление каналом передачи данных, английская аббревиатура HDLC) [36]. Стандартный формат кадра ВУК представлен на рис. 6.16.

Рис. 6.16. Формат кадра HDLC (ВУК)

В начале и в конце кадра для установления и поддержания синхронизации применяется восьмиразрядная последовательность 01111110, называемая флагом или меткой. Поскольку в начале и в конце кадра устанавливаются флаги, определить структуру информационного поля нет необходимости: пакет, поступающий с вышестоящего сетевого уровня, может занимать любое желаемое число разрядов. Проверочное поле занимает 16 разрядов, поля адреса, контроля и управления - по 8 разрядов.

Протокол канального уровня реализует следующие функции:

• соединения между концами каналов;

• организации передачи данных по каналу;

• разъединения каналов.

Следуя концепции многоуровневой архитектуры, ISO стандартизировала применение на каждом уровне архитектуры четырех основных примитивов услуг, чтобы предусмотреть взаимодействие между пользователями услуг на одном уровне и поставщиками услуг на нижестоящем уровне. Эти примитивы - к ним относятся запрос (request), признак (indication), ответ (response), подтверждение (confirm) - являются основными элементами определения обмена между пользователями услуг.

При работе примитивов два соседних уровня взаимодействуют между собой. Нижние являются поставщиками услуг, верхние - потребителями.

Емкость канала связи | Информационные системы и технологии в зкономике | Схема организации фаз коммуникаций